• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SÉRIE] teste da integral

[SÉRIE] teste da integral

Mensagempor magellanicLMC » Qua Fev 05, 2014 20:38

determine pelo teste da integral se a série é convergente ou divergente
\sum_{2}^{\infty} \frac{1}{nln(n)}
eu sei fazer o teste (é divergente) mas n consigo desenvolver as condições que seriam:
1) ser decrescente (provando pelo teste da derivada primeira
2) ter termos positivos p/ x\succeq1 e ser contínua
mas n consigo calcular a derivada primeira (acredito que seja pela regra do quociente)
magellanicLMC
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 28, 2014 20:35
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [SÉRIE] teste da integral

Mensagempor e8group » Qui Fev 06, 2014 11:55

Dica :

Defina f : (1,+\infty)  \mapsto \mathbb{R}   ;    f(x) = \frac{1}{xln(x)} e considere a_n = f(n) , n = 2 ,3,4, \hdots .

(i) Sempre n+1 > n ,então (n+1)ln(n+1) >  nln(n) ... ( qualquer função logarítmica é estritamente monótona)

(ii) Mostrar que f(n) > 0 , \forall n é o suficiente mostrar que ln(n) > 0 , \forall n . Para tal , basta usar que n > 1 e que qualquer função logarítmica é estritamente monótona .Quanto a continuidade , se a > 1 então o limite da função quando x \to a é o próprio valor da função no ponto a (Fácil verificar) .

É isso . Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.