Página 1 de 1

[Limites] duas variáveis. Prova através da definição formal

MensagemEnviado: Sáb Jan 25, 2014 17:59
por marcosmuscul
Diga se o limite existe, se sim qual o valor.
f(x,y)=\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}


o que eu fiz:
sabe-se que o ponto em questão é o (0.0).
fiz o limite através da reta x=0 e também da reta y=0. Em ambas o limite deu 2. Blz, mas não posso afirmar ainda que o limite é 2 !
Tentei usando a definição formal de limite, no caso de duas variáveis, isto é:


minha linha de raciocínio:
\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1 \geq 0
0 < \frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} < \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}
Então:
\left|\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 \right| < \left|\frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 \right|
Mas vê-se também que pode-se tirar o módulo, ficando:
\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 < \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2
Assim:
\varepsilon = \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2
ficando...
\delta = \sqrt[2]{(\varepsilon + 2 )\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}
Assim, consegui encontrar uma relação entre épslon e delta. Sendo ambos positivos. Assim, existe limite e é igual a DOIS.
De fato a resposta do gabarito é dois. Porém não sei se minha prova está correta.

Re: [Limites] duas variáveis. Prova através da definição for

MensagemEnviado: Seg Fev 03, 2014 20:10
por e8group
Dica :

Multiplique ''em cima' e 'em baixo' por \sqrt{x^2 +y^2 + 1} + 1 .Desta forma ,temos

f(x,y) = \frac{x^2 + y^2 (\sqrt{x^2 +y^2 + 1} + 1)}{x^2 + y^2 }  = \sqrt{x^2 +y^2 + 1} + 1 (pois (x,y) \neq (0,0) ) .Agora é simples computar o limite e até mesmo demonstra-ló pela definição .

Re: [Limites] duas variáveis. Prova através da definição for

MensagemEnviado: Ter Fev 04, 2014 10:03
por marcosmuscul
putz, um modo bem mais simples! rsrssr... valeu!