• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] duas variáveis. Prova através da definição formal

[Limites] duas variáveis. Prova através da definição formal

Mensagempor marcosmuscul » Sáb Jan 25, 2014 17:59

Diga se o limite existe, se sim qual o valor.
f(x,y)=\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}


o que eu fiz:
sabe-se que o ponto em questão é o (0.0).
fiz o limite através da reta x=0 e também da reta y=0. Em ambas o limite deu 2. Blz, mas não posso afirmar ainda que o limite é 2 !
Tentei usando a definição formal de limite, no caso de duas variáveis, isto é:
se: 0 < \sqrt[2]{{(x-0)}^{2}+{(y-0)}^{2}} < \delta ....então.... \left|f(x,y) - L \right|< \varepsilon

minha linha de raciocínio:
\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1 \geq 0
0 < \frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} < \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}
Então:
\left|\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 \right| < \left|\frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 \right|
Mas vê-se também que pode-se tirar o módulo, ficando:
\frac{{x}^{2}+{y}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2 < \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2
Assim:
\varepsilon = \frac{{\delta}^{2}}{\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1} - 2
ficando...
\delta = \sqrt[2]{(\varepsilon + 2 )\sqrt[2]{{x}^{2}+{y}^{2}+1}- 1}
Assim, consegui encontrar uma relação entre épslon e delta. Sendo ambos positivos. Assim, existe limite e é igual a DOIS.
De fato a resposta do gabarito é dois. Porém não sei se minha prova está correta.
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Limites] duas variáveis. Prova através da definição for

Mensagempor e8group » Seg Fev 03, 2014 20:10

Dica :

Multiplique ''em cima' e 'em baixo' por \sqrt{x^2 +y^2 + 1} + 1 .Desta forma ,temos

f(x,y) = \frac{x^2 + y^2 (\sqrt{x^2 +y^2 + 1} + 1)}{x^2 + y^2 }  = \sqrt{x^2 +y^2 + 1} + 1 (pois (x,y) \neq (0,0) ) .Agora é simples computar o limite e até mesmo demonstra-ló pela definição .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] duas variáveis. Prova através da definição for

Mensagempor marcosmuscul » Ter Fev 04, 2014 10:03

putz, um modo bem mais simples! rsrssr... valeu!
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.