• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Tripla (Resolvida)] Volume de Sólido

[Integral Tripla (Resolvida)] Volume de Sólido

Mensagempor raimundoocjr » Seg Dez 16, 2013 23:33

Fiz esse exercício, mas não tenho o gabarito, então gostaria de confirmar minha resolução com outros membros.


(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 20 - Pág.: 920)
Use a integral tripla para determinar o volume do sólido dado.
O sólido limitado pelos paraboloides y=x²+z² e y=8-x²-z²


Resolução:
Calcular o volume do sólido limitado pelos paraboloides dados, é o mesmo, em termos numéricos, que calcular o volume limitado pelos seguintes paraboloides: z=x²+y² e z=8-x²-y². O valor correspondente às unidades de volume é exatamente igual. Além disso, a forma como é apresentada as equações lembra as coordenadas cilíndricas, então será feito essa substituição. Antes, é importante determinar o conjunto ao qual será feita a integração. A ideia partirá de encontrar a interseção entre as superfícies:

Se z=z, então x²+y²=8-x²-y². Implica que 2x²+2y²=8, e portanto x²+y²=2². Esta última equação representa a circunferência de centro na origem e raio valendo 2 unidades.

Porém, em termos de domínio da função, tem-se que considerar o seguinte círculo:
0\leq x^2+y^2\leq 2^2

Mudança de Variável na Integral Tripla:
\iiint_E f(x, y, z) dxdydz=\iiint_{E_{uvw}} f(\phi(u, v, w))\begin{vmatrix}\frac{\partial(x, y, z)}{\partial(u, v, w)}\end{vmatrix}dudvdw

Onde: \begin{vmatrix}\frac{\partial(x, y, z)}{\partial(u, v, w)}\end{vmatrix} é o módulo do determinante jacobiano.

Para o caso em específico feito por coordenadas cilíndricas:
\iiint_E dxdydz=\iiint_{E_{\theta\rho z}} \rho d\theta d\rho dz

Imagine que o ângulo \theta formado com o eixo das abscissas irá percorrer todos os ângulos para gerar o sólido que estamos calculando o volume, então 0\leq \theta \leq 2\pi. Para o caso de \rho: 0\leq \theta \leq 2. A "componente z" irá de uma superfície a outra, ou seja, de z=x^2+y^2 até z=8-x^2-y^2. Mas, em coordenadas cilíndricas: z=\rho^2 até z=8-\rho^2.

Coordenadas Cilíndricas:
\left\{\begin{matrix}x=\rho cos\theta\\ y=\rho sen\theta\\ z=z\end{matrix}\right.

Integral Tripla:
\int_0^2\int_0^{2\pi}\int_{\rho^2}^{8-\rho^2}\rho dz d\theta d\rho=16\pi unidades de volume

Passo-a-passo:
a) \int_{\rho^2}^{8-\rho^2}\rho dz=\rho\int_{\rho^2}^{8-\rho^2} dz=\rho[(8-\rho^2)-(\rho^2)]=\rho(8-2\rho^2)=-2\rho^3+8\rho
b) \int_0^{2\pi}(-2\rho^3+8\rho)d\theta=-2\rho^3+8\rho(2\pi-0)=-4\pi\rho^3+16\pi\rho
c) \int_0^2(-4\pi\rho^3+16\pi\rho)d\rho=4\pi[-\frac{\rho^4}{4}+2\rho^2]_0^2=16\pi
Editado pela última vez por raimundoocjr em Qua Dez 18, 2013 16:15, em um total de 1 vez.
raimundoocjr
 

Re: [Integral Tripla (Resolvida)] Volume de Sólido

Mensagempor young_jedi » Ter Dez 17, 2013 19:48

analisei sua resolução e achei que esta perfeita acho que a resposta é isto mesmo!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 32 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}