• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Coordenada Polar] Volume por Integral Dupla

[Coordenada Polar] Volume por Integral Dupla

Mensagempor raimundoocjr » Qui Dez 12, 2013 19:42

Caso alguém possa me ajudar, eu agradeço.


(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 25 - Pág.: 900)
Utilize coordenadas polares para determinar o volume do sólido dado.
Acima do cone z=\sqrt{x^2+y^2} e abaixo da esfera x²+y²+z²=1.


Comentário:
Integral Dupla ("Teorema de Fubini"):
Se \int_{a}^{b}f(x, y)dx=\alpha, então \int_{c}^{d} \int_{a}^{b}f(x, y)dxdy=\int_{c}^{d}\alpha \cdot dy.
raimundoocjr
 

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.