• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Coordenada Polar] Volume por Integral Dupla

[Coordenada Polar] Volume por Integral Dupla

Mensagempor raimundoocjr » Qui Dez 12, 2013 19:42

Caso alguém possa me ajudar, eu agradeço.


(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 25 - Pág.: 900)
Utilize coordenadas polares para determinar o volume do sólido dado.
Acima do cone z=\sqrt{x^2+y^2} e abaixo da esfera x²+y²+z²=1.


Comentário:
Integral Dupla ("Teorema de Fubini"):
Se \int_{a}^{b}f(x, y)dx=\alpha, então \int_{c}^{d} \int_{a}^{b}f(x, y)dxdy=\int_{c}^{d}\alpha \cdot dy.
raimundoocjr
 

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.