• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolver limite de exponencial por L'Hospital.

Resolver limite de exponencial por L'Hospital.

Mensagempor Sobreira » Sáb Nov 30, 2013 15:00

Olá amigos,

Estou tentando resolver este limite por L'Hospital mas nunca consigo eliminar a indeterminação...alguma idéia ???

\lim_{b\rightarrow\infty} \frac{{e}^{b}}{{e}^{sb}}

Se eu derivar seguidas vezes ainda não consigo eliminar a indeterminação \frac{\infty}{\infty}
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor e8group » Sáb Nov 30, 2013 15:27

Lembre-se \frac{d^k}{dx^k}(e^x) = e^x e que \frac{d^k}{dx^k} e^{\lambda \cdot x } =  \lambda^k \cdot e^{\lambda x} para qualquer natural k . Além disso note que

\frac{e^b}{e^{sb}} = e^{b-sb} = e^{b(1-s)} = (e^{1-s})^b .Tem alguma informação sobre o número s ? Se ele for menor que 1 segue que e^{1-s} > 1 ,caso contrário teremos 0 < e^{1-s} < 1 . Para concluir basta responder o que acontece com a função exponencial de base positiva e menor que 1 e com a de base maior que 1 lá no infinito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor Sobreira » Sáb Nov 30, 2013 15:52

Na realidade estou tentando encontrar a transformada de Laplace através da definição:

A função é f(t)={e}^{t+7}

Como posso resolver ???

\int_{0}^{\infty}{e}^{-st}f\left(t \right)dt

Depois de resolver a integral, quando considerei s>0 acabei caindo neste problema que ainda não consegui resolver. Se puder me ajudar, agradeço !!
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor Sobreira » Sáb Nov 30, 2013 16:42

Veja o que consegui até agora:

resolução.jpg


resolução 2.jpg
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor e8group » Sáb Nov 30, 2013 16:43

Ainda não estudei Transformada de Laplace ,parece que isto é uma aplicação que leva uma função a outra (me corrija se eu estou errado ) . Posso tentar te ajudar com a integral imprópria . Sendo f(t) = e^t + 7 . Temos que

\int_{0}^{\infty } e^{-st} (e^t+7)  dt  =  \int_{0}^{\infty } (e^{-st +t} + 7e^{-st})  dt = \int_{0}^{\infty } e^{(1-s)t}dt + 7 \int_{0}^{\infty }e^{-st} dt .

Agora faça as substituições simples u = (1-s )t e v = - st [/tex] as derivadas nos dá respectivamente ,

du = (1-s)dt e dv = -s dt assuma a princípio que s \neq 1 trataremos deste caso depois .Neste caso , teremos dt = \frac{du}{1-s} e dt =  \frac{dv}{-s} já que você considerou s > 0 (ou seja ,s \neq 0 )

Vamos ter que considerar primeiro 0<s < 1 e segundo s > 1 .
No primeiro caso temos que 1-s > 0 e -s < 0 e assim quando t \to \infty ,
u \to \infty e v \to -\infty , quando t = 0 teremos também u=v = 0 ,renovando os limites de integração , a nova integral se escreve

\int_{0}^{\infty} e^u \frac{du}{1-s}  +   \int_0^{-\infty} e^v  {dv}{-s} ou ainda

\frac{1}{1-s} \int_0^{\infty} e^u du  - \frac{1}{s}  \int_0^{-\infty} e^v dv  (*) .

Calculando estas integrais obterá uma função da F_1 real a qual depende da variável s que pertence (0,1) . (Isto se a integral convergir )

No segundo caso s > 1 ,então 1-s < 0 e -s < 0 e assim , quando t \to \infty teremos que u \to -\infty e v\to -\infty e como já vimos acima quando t =0 , v=u= 0 . Podemos usar a mesma expressão (*) apenas trocando os limites de integração e teremos outra função F_2 real dependendo da variável s a qual pertence (1,+\infty) , dada por

\frac{1}{1-s} \int_0^{-\infty} e^u du  - \frac{1}{s}  \int_0^{-\infty} e^v dv .

Portanto basta fazer estas contas são bem simples .

E finalmente se s = 1 .

Teremos \int_{0}^{\infty } e^{-t} (e^t+7)  dt  = \int_{0}^{\infty } (1 + 7e^{-t}) dt e esta integral não converge .

No final obterá uma função F : (0,1)\cup(1,+\infty) \mapsto \mathbb{R} dada por F(s) = \begin{cases}F_1(s) ;         1>s >0  \\ F_2(s)  ;    s > 1   \end{cases} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor Sobreira » Sáb Nov 30, 2013 16:59

Acho só que você viu errado a função:

A função é f\left(t \right)={e}^{-st+t+7}

E não:

f\left(t \right)={e}^{-st+t}+7
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor e8group » Sáb Nov 30, 2013 16:59

Agora que vi f(t) = e^{t+7}e não como eu tinha considerado . Neste caso é até mais fácil . Basta ver que e^{t+7} = e^7  \cdot e^t e portanto o integrando se escreve f(t)e^{-st} = e^7 e^t e^{-st} = e^7 \cdot e^{(1-s)t} .

Basta desconsiderar aquela integral multiplicada por 7 no post acima , e considerar a outra multiplicado por e ^7 .

Assim terá de calcular :

e^7 \frac{1}{1-s} \int_0^{\infty}  e^u du , 1 >s >0 e


e^7 \frac{1}{1-s} \int_0^{-\infty}  e^u du , s >1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor e8group » Sáb Nov 30, 2013 17:01

Talvez ficou um pouco confuso . Se você não compreender só dizer .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor Sobreira » Sáb Nov 30, 2013 17:21

Então...
Eu realmente tenho ficado confuso naquela parte do asterisco...pq não eh somente neste exercício....já houve alguns outros que o problema ficava naquele termo do asterisco por não conseguir eliminar a indeterminação e vejo que a resposta está logo ali do outro lado esperando o resultado deste asterisco ser zero.
Até então os exercícios que eu fiz era considerado só duas condições: s>0 ou s<0.
Agora tentando entender melhor este exercício, mandei inclusive a foto, eu consegui sair deste problema utilizando aquelas condições acima e vi que só chegaria na resposta na condição de s>1. Como você disse você ainda não viu o conteúdo de Laplace, mas sua ideia está correta.
Agora pensando somente como uma integral imprópria, pelo que resolvi você considera correta minha preposição de que s tem que ser maior que 1 ???
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Resolver limite de exponencial por L'Hospital.

Mensagempor e8group » Sáb Nov 30, 2013 17:37

Sim concordo com você , s será maior que 1 . Por quê a integral \int_0^{\infty} e^u du não converge (1>s>0) , já a outra \int_0^{-\infty} e^u du (s>1) converge . Você mesmo notou isto na sua solução pelo que vi . É isso .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 53 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?