• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PARAMETRIZAÇÃO DE CURVAS

PARAMETRIZAÇÃO DE CURVAS

Mensagempor sasuyanli » Sáb Out 26, 2013 12:14

Uma haste presa na origem do plano xy, ocupa a posição da reta x=ty. A haste intercepta a reta y=4 no ponto S e a elipse 4x²+(y-2)²=4 no ponto Q. Quando t varia, o vértice P do triângulo retângulo QPS descreve uma curva.

a) Escreva equações paramétricas dessa curva, em função do parâmetro t.

Não consegui chegar no resultado do gabarito dessa questão.
Fiz o seguinte:
Se y=4 e x=yt, então x(t)=4t.

E se a equação da elipse é definida por:
[tex]4x^2+(y-2)^2=4\Rightarrow x^2+\frac{(y-2)^2}{4}=1\Rightarrow y^2t^2+\frac{y^2-4y+4}{4}=1\Rightarrow 4y^2t^2 + y^2- 4y +4 = 4 \Rightarrow 4y^2t^2 + y^2- 4y=0\Rightarrow y =\frac{x}{t} \Rightarrow \frac{x^2}{t^2} + 4x^2 - 4\frac{x}{t}=0 \Rightarrow x\left(\frac{x}{t^2} + 4x - \frac{4}{t} \right)=0 \Rightarrow \frac{x}{t^2} + 4x - \frac{4}{t}=0 \Rightarrow x\left(4+\frac{1}{t^2} \right)=\frac{4}{t} \Rightarrow x= \frac{4}{t}\ \times \frac{1}{\left 4t^2+1 \right} \Rightarrow y =\frac{4}{1+4t^2}

Porém, no gabarito a equação paramétrica da curva é 4t, \frac{4}{4+4t^2}
Gostaria de uma ajuda para saber onde errei.
Obrigada.
sasuyanli
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Jul 29, 2013 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: FÍSICA
Andamento: cursando

Re: PARAMETRIZAÇÃO DE CURVAS

Mensagempor e8group » Dom Nov 03, 2013 14:31

Também estou com a mesma dúvida ,resolvi este exercício da seguinte forma :

Supondo que a curva C (obtida pelo deslocamento do vértice P) tenha uma parametrização dada por \sigma : t \mapsto  \sigma(t) = (x(t),y(t)) . Como o ponto Q pertence simultaneamente a elipse e a reta yt=x dada .Então , fazendo as contas conforme você fez , vamos obter Q = ( \frac{4t}{1+4t^2} , \frac{4}{1+4t^2} ) . Ora , os pontos Q,S,P estão variando em conjunto de modo a preservar a ortogonalidade entre \vec{PS} e \vec{PQ} (estou utilizando este argumento para utilizar o próximo resultado afirmando que as ordenadas entre P,Q são iguais ) à medida que t varia . Logo ,

Q = ( \frac{4t}{1+4t^2} , y(t) ) , P = (x(t) , y(t) ) , S =(x(t),4) com y(t) = \frac{4}{1+4t^2} .

E facilmente obtemos x(t) = 4t pelo que o ponto S pertence as duas retas dadas .

Vou conversar com meu prof. de cal. sobre este exercício .Obtendo resultados postarei .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59