• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade, Derivada Parcial e Função Diferenciável]

[Continuidade, Derivada Parcial e Função Diferenciável]

Mensagempor raimundoocjr » Qui Out 24, 2013 17:28

Considere a função
f(x, y)=\left\{\begin{matrix} \frac{xy^2}{x^2+y^2} \ se \ (x, y)\neq (0, 0)& & \\ 0 \ se \ (x, y)=(0, 0) & & \end{matrix}\right.
(a) f(x, y) é contínua em (0, 0)?
\lim_{(x, y)\rightarrow (0, 0)} \frac {xy^2}{x^2+y^2}=(\lim_{(x, y)\rightarrow (0, 0)} x)\cdot (\lim_{(x, y)\rightarrow (0, 0)} \frac {y^2}{x^2+y^2})
\lim_{(x, y)\rightarrow (0, 0)} x vai a zero.
\lim_{(x, y)\rightarrow (0, 0)} \frac {y^2}{x^2+y^2}: é limitada.
Então,
(\lim_{(x, y)\rightarrow (0, 0)} x)\cdot (\lim_{(x, y)\rightarrow (0, 0)} \frac {y^2}{x^2+y^2})=0=f(0, 0)
É contínua.
(b) f(x, y) tem derivadas parciais em (0, 0)?
Sim,
\lim_{x\rightarrow 0} \frac{f(x, 0)-f(0, 0)}{x-0}=\lim_{x\rightarrow 0} \frac{0}{x}=0
\lim_{y\rightarrow 0} \frac{f(y, 0)-f(0, 0)}{y-0}=\lim_{y\rightarrow 0} \frac{0}{y}=0
(c) f(x, y) é diferenciável em (0, 0)?
Justifique suas respostas.

Como faço o item c?
raimundoocjr
 

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?