• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite - Duas Variáveis (Indeterminação)]

[Limite - Duas Variáveis (Indeterminação)]

Mensagempor raimundoocjr » Qui Out 17, 2013 21:55

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 18 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.
\lim_{(x, y)\rightarrow (0, 0)} \frac {xy^4}{x^2+y^8}

Resposta para o cálculo do limite: 0 (zero).

Coloquei a definição apenas para tentar clarear as ideias. Mas, se alguém conseguir responder por outro método, irá ajudar. Por exemplo, Teorema do Confronto, mudança de variável etc.

Definição de Limite de uma Função de Duas Variáveis (pelo menos):
Imagem
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)

Como faço para provar esse limite?
raimundoocjr
 

Re: [Limite - Duas Variáveis (Indeterminação)]

Mensagempor Man Utd » Ter Jun 17, 2014 13:05

Olá:D


Esse limite não existe, vamos usar a regra dos caminhos :


\lim_{ (x,y) \to (0,0) } \; \frac{xy^4}{x^2+y^8}



Pelo caminho : (x,0) :


\lim_{x \to 0 } \; \frac{x*0^4}{x^2+0^8}=0



Agora por : (y^4,y) :


\lim_{y \to 0} \; \frac{y^4*y^4}{y^8+y^8}


\lim_{y \to 0} \; \frac{y^8}{2y^8}=\frac{1}{2}



Assim como os valores são diferentes temos que o limite não existe.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}