• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite - Três Variáveis]

[Limite - Três Variáveis]

Mensagempor raimundoocjr » Qui Out 17, 2013 19:53

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 22 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.
\lim_{(x, y)\rightarrow (0, 0)} \frac {yz}{x^2+4y^2+9z^2}

Resposta para o cálculo do limite: 0 (zero).

Coloquei a definição apenas para tentar clarear as ideias. Mas, se alguém conseguir responder por outro método, irá ajudar. Por exemplo, Teorema do Confronto, mudança de variável etc.

Definição de Limite de uma Função de Duas Variáveis (pelo menos):
Imagem
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)

Como faço para provar esse limite?
raimundoocjr
 

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.