• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite - Seno - Função Duas Variáveis]

[Limite - Seno - Função Duas Variáveis]

Mensagempor raimundoocjr » Seg Out 14, 2013 20:14

(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Q. 16 - Pág.: 810)
Determine o limite, se existir, ou mostre que não existe.
\lim_{(x, y)\rightarrow (0, 0)}\frac{x^2sen^2y}{x^2+2y^2}

Resposta para o cálculo do limite: O limite não existe.

Definição de Limite de uma Função de Duas Variáveis (pelo menos):
Imagem
(Livro: Cálculo - Autor: James Stewart - Volume 2 - 7ª Edição - Pág.: 804)

Como faço para provar esse limite?
raimundoocjr
 

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor young_jedi » Seg Out 14, 2013 23:22

se fizermos o limite por dois caminhos diferentes e os resultados forem diferentes então o limite não existe
tomando o caminho x=y

\lim_{(x,y)\to(0,0)}\frac{x^2\sin^2y}{x^2+2y^2}

\lim_{(x,y)\to(0,0)}\frac{x^2\sin^2x}{x^2+2x^2}

\lim_{(x,y)\to(0,0)}\frac{\sin^2x}{3}=0

agora pelo caminho x=\sqrt{y^4-2y^2}

\lim_{(x,y)\to(0,0)}\frac{\sqrt{y^4-2y^2}^2\sin^2y}{\sqrt{y^4-2y^2}^2+2y^2}


\lim_{(x,y)\to(0,0)}\frac{(y^4-2y^2)\sin^2y}{y^4}

\lim_{(x,y)\to(0,0)}\frac{(y^2-2)\sin^2y}{y^2}

\lim_{(x,y)\to(0,0)}(y^2-2).\frac{\sin y}{y}.\frac{\sin y}{y}=-2.1.1=-2

portanto o limite não existe
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor raimundoocjr » Ter Out 15, 2013 09:49

O fato de ter escolhido x=\sqrt{y^4-2y^2} foi por "Tentativa e Erro, Tentativa e Acerto"? Ou você pode me dar alguma dica quando forem limites assim, em termos de qual curva "aproximar" ou "substituição realizar"?
raimundoocjr
 

Re: [Limite - Seno - Função Duas Variáveis]

Mensagempor young_jedi » Ter Out 15, 2013 19:10

Então, foi por tentativa e erro mesmo, infelizmente não existe uma regra geral para encontrar dois caminhos para escolher
neste caso por exemplo, encontrar um caminho que desse limite igual a 0 foi simples, então a dificuldade foi encontrar um caminho para que o limite fosse diferente de zero, oque eu pensei neste caso foi utilizar o limite fundamental de \frac{\sin x}{x} para conseguir isto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.