• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Estou com dificuldade para resolver esta integral

[Integral] Estou com dificuldade para resolver esta integral

Mensagempor Paulo Perez » Qui Out 03, 2013 12:22

\int_{0}^{x}\sqrt[2]{(1 + {t}^{2})}dt

Olá, estou com muita dificuldade para resolver esta integral, pois usando o método de substituição com u = t², dt = \frac{du}{2t} e fica com duas variáveis diferentes , e usando u =\sqrt[2]{(1 + {t}^{2})}, dt = \frac{t}{\sqrt[2]{(1 + {t}^{2})}} fica mais complexo ainda, alguém pode me ajudar por favor.
Obrigado
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Estou com dificuldade para resolver esta inte

Mensagempor Bravim » Qui Out 03, 2013 16:45

Bem, esse integral é meio trabalhoso mesmo.
Como nós temos \sqrt[]{1+t^2}, é melhor substituir por \sqrt[]{1+t^2}=sec(u)
O que vai dar:
t=tg(u)
dt=sec^2(u)du
\int_{0}^{arctgx}sec^3(u)du
Bem, agora é só integrar por partes.:)
\int_{0}^{arctgx}sec^3(u)du = \int_{0}^{arctgx}sec(u)*sec^2(u)du
\int_{0}^{arctgx} sec^2(u)du=x
\int_{0}^{arctgx}sec^3(u)du=1/2*(x*sec(arctgx)+log\left|x+sec(arctgx) \right|)
Editado pela última vez por Bravim em Sáb Out 05, 2013 06:14, em um total de 2 vezes.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral] Estou com dificuldade para resolver esta inte

Mensagempor Paulo Perez » Sex Out 04, 2013 16:32

Muito obrigado pela ajuda! :-D
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.