• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Estou com dificuldade para resolver esta integral

[Integral] Estou com dificuldade para resolver esta integral

Mensagempor Paulo Perez » Qui Out 03, 2013 12:22

\int_{0}^{x}\sqrt[2]{(1 + {t}^{2})}dt

Olá, estou com muita dificuldade para resolver esta integral, pois usando o método de substituição com u = t², dt = \frac{du}{2t} e fica com duas variáveis diferentes , e usando u =\sqrt[2]{(1 + {t}^{2})}, dt = \frac{t}{\sqrt[2]{(1 + {t}^{2})}} fica mais complexo ainda, alguém pode me ajudar por favor.
Obrigado
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Estou com dificuldade para resolver esta inte

Mensagempor Bravim » Qui Out 03, 2013 16:45

Bem, esse integral é meio trabalhoso mesmo.
Como nós temos \sqrt[]{1+t^2}, é melhor substituir por \sqrt[]{1+t^2}=sec(u)
O que vai dar:
t=tg(u)
dt=sec^2(u)du
\int_{0}^{arctgx}sec^3(u)du
Bem, agora é só integrar por partes.:)
\int_{0}^{arctgx}sec^3(u)du = \int_{0}^{arctgx}sec(u)*sec^2(u)du
\int_{0}^{arctgx} sec^2(u)du=x
\int_{0}^{arctgx}sec^3(u)du=1/2*(x*sec(arctgx)+log\left|x+sec(arctgx) \right|)
Editado pela última vez por Bravim em Sáb Out 05, 2013 06:14, em um total de 2 vezes.
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral] Estou com dificuldade para resolver esta inte

Mensagempor Paulo Perez » Sex Out 04, 2013 16:32

Muito obrigado pela ajuda! :-D
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)


cron