por emerson1991 » Qua Set 11, 2013 10:23
Alguém poderia me ajudar com esse problema de otimização...
De todos os cones circulares retos que podem se inscritos em uma esfera de raio a, determine o volume do cone de volume máximo.
Obrigado.
-
emerson1991
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 10, 2013 14:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Agronômica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [otimização] Problema
por Revelants » Dom Out 05, 2008 15:08
- 1 Respostas
- 1863 Exibições
- Última mensagem por admin

Ter Out 14, 2008 15:07
Tópicos sem Interação (leia as regras)
-
- [otimização] Problema
por Revelants » Dom Out 05, 2008 15:09
- 1 Respostas
- 2932 Exibições
- Última mensagem por admin

Ter Out 14, 2008 15:07
Tópicos sem Interação (leia as regras)
-
- Problema de Otimização
por xGoku » Dom Nov 23, 2014 21:30
- 1 Respostas
- 2716 Exibições
- Última mensagem por adauto martins

Sáb Dez 27, 2014 20:25
Cálculo: Limites, Derivadas e Integrais
-
- [Problema de otimização]
por Neusa » Ter Jan 27, 2015 10:28
- 1 Respostas
- 1456 Exibições
- Última mensagem por Russman

Ter Jan 27, 2015 23:19
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida] Problema de otimização
por Tsuyoshi » Sáb Jun 20, 2015 21:20
- 0 Respostas
- 2093 Exibições
- Última mensagem por Tsuyoshi

Sáb Jun 20, 2015 21:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.