• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor barbara-rabello » Ter Ago 13, 2013 21:10

Estava resolvendo a seguinte integral: \int \frac{1}{{x}^{2} + \frac{3}{4}}dx.

Na resolução, passava para o seguinte passo: \int \frac{4}{3({\frac{4}{3}x}^{2} +1)}dx. Não entendi essa passagem. Alguém pode me explicar?
Obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral

Mensagempor Man Utd » Ter Ago 13, 2013 22:35

vamos colocar o \\\\ \frac{3}{4} em evidência :

\\\\ \int \frac{1}{{x}^{2} + \frac{3}{4}}dx \\\\\\\ \int \frac{1}{{x}^{2} + \frac{3}{4}}dx \\\\\\ \int \frac{1}{\frac{3}{4}*(\frac{x^{2}}{\frac{3}{4}}+1)}dx \\\\\\ \int \frac{1}{\frac{3}{4}*(\frac{4x^{2}}{3}+1)}dx \\\\\\ \frac{4}{3}*\int \frac{1}{(\frac{2x}{\sqrt 3})^{2}+1}dx

consegue terminar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Integral

Mensagempor Russman » Ter Ago 13, 2013 22:36

É só manipular a fração.

\frac{1}{x^2 + \frac{3}{4}} = \frac{1}{\frac{3}{4}(\frac{4}{3}x^2+1)}=\frac{4}{3}\frac{1}{(\frac{4}{3}x^2+1)} = \frac{4}{3(\frac{4}{3}x^2+1)}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral

Mensagempor barbara-rabello » Qua Ago 14, 2013 19:14

Muito obrigada pelo esclarecimento!

A partir daí consigo terminar sim. Só estava com dificuldade em entender o porque dessa manipulação.

Mais uma vez, obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)