• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL]Calcular área y=x^2

[INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:07

Estou com dúvidas neste exercício:
Seja R a região limitada pela parábola y={x}^{2}, pela reta y = 2x – 1 e pelo eixo x. Encontre o valor da área R.
Não sei se é pra calcular apenas a área acima do eixo x ou abaixo...pois a reta passa por -1 no eixo y e é tangente a parábola no ponto (1,1)...
Desde já, agradeço quem ajudar.
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 02:19

Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif
graph
graph (2).gif (3.96 KiB) Exibido 1002 vezes
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:34

Russman escreveu:Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif



Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif
[/quote]


Então eu preciso calcular em função do y?
fazer x=\sqrt[]{y} e x=
\frac{y+1}{2}, ficando \int_{0}^{1}\frac{y+1}{2}-{y}^{\frac{1}{2}} dy ...tá certo o q eu fiz ou fiz besteira?
o resultado deu "\frac{1}{12}"
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 02:48

Pode fazer assim como tu fez, pq se deu \frac{1}{12} deve estar certo.

Eu faria a integral

A = \int_{0}^{1}x^2dx - \int_{\frac{1}{2}}^{1}(2x-1)dx = \frac{1}{12}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:54

Russman escreveu:Pode fazer assim como tu fez, pq se deu \frac{1}{12} deve estar certo.

Eu faria a integral

A = \int_{0}^{1}x^2dx - \int_{\frac{1}{2}}^{1}(2x-1)dx = \frac{1}{12}


Entendi! Eu pegava o intervalo errado para a reta!
Muito obrigado Russman!
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 03:13

Não, na integral em y o intervalo é de 0 à 1. Você fez certo. Só errou o sinal na integral que você postou.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron