• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]derivada de função de raiz cúbica

[Derivada]derivada de função de raiz cúbica

Mensagempor armando » Sáb Jul 20, 2013 15:22

Olá a todos.

Dada a função :

f(x)=\sqrt[3]{\frac{3}{x^2}}

Tenho dúvidas quanto à solução dada no livro de onde retirei a questão. Que é como se segue:

f^,(x)=-\frac{2\sqrt[5]{3}}{5}\cdot x^{-\frac{7}{5}

Tanto quanto sei a fórmula para a derivada de uma raiz é : y^,=m\cdotu^{m-1}\cdot u^,

ou, esta outra: y^,=\frac{1}{k\sqrt[k]{u^{k-1}}}\cdot u^,

A derivada do radicando,u= (\frac{3}{x^2}) aplicando a fórmula de resolução do quociente dá u^, =(-\frac{6}{x^3}). Aplicando no lugar correto da/s fórmula/s, e desenvolvendo qualquer uma delas na integra deveríamos chegar á solução dada. Facto que aliás não consegui.
A minha dúvida é a seguinte:__ Será que a solução está errada ? Ou me estão faltando alguns artifícios matemáticos para conseguir chegar a ela ?
Gostava que alguém resolvesse a questão na integra,até à simplificação máxima para verificação, e assim tirar minha dúvida.

Grato pela atenção
armando
Editado pela última vez por armando em Sáb Jul 20, 2013 16:17, em um total de 1 vez.
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor MateusL » Sáb Jul 20, 2013 15:49

Armando, apesar de ter ficado meio vago o seu pedido, acredito, pelo título deste tópico, que queres descobrir a derivada de f(x)

Basta notar que:

\dfrac{d x^n}{dx}=n\cdot x^{n-1}

E que f(x) pode ser escrito como:

f(x)=\sqrt[3]{3}\cdot x^\frac{-2}{3}

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor armando » Sáb Jul 20, 2013 16:44

Olá MateusL .

É possível que o meu pedido lhe parecesse meio vago no momento em que você o viu. Dado que logo no início,quando o estava iniciando me descuidei, e sem querer clikei em Enviar. Creio que foi esse o motivo.
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor MateusL » Sáb Jul 20, 2013 17:01

Armando, não seria f(x)=\sqrt[5]{\frac{3}{x^2}}?

Porque só assim o resultado iria fechar.

Se for, basta notar que:

f(x)=\sqrt[5]{3}\cdot x^{-\frac{2}{5}}

E, como \dfrac{dx^n}{dx}=n\cdot x^{n-1}:

\dfrac{df(x)}{dx}=\dfrac{d(\sqrt[5]{3}\cdot x^{-\frac{2}{5}})}{dx}=\sqrt[5]{3}\cdot \dfrac{d x^{-\frac{2}{5}}}{dx}=\sqrt[5]{3}\cdot \dfrac{-2}{5}\cdot x^{-\frac{2}{5}-1}=-\dfrac{2\sqrt[5]{3}}{5}\cdot x^{-\frac{7}{5}}

Qualquer dúvida, só perguntar!
Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor armando » Dom Jul 21, 2013 22:17

Olá Mateus.

De facto você tinha razão. Na verdade eu me enganei ao transcrever o enunciado aqui para o fórum. Efetivamente, como pude verificar com mais atenção no livro de onde o saquei, em vez de raiz cubica, está de facto raiz quinta. Assim, já consegui chegar à solução por uma das fórmulas que referi.
Obrigado por compartilhar a sua perspicácia, e me alertar para o meu erro.

Abraço !
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: