• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]derivada de função de raiz cúbica

[Derivada]derivada de função de raiz cúbica

Mensagempor armando » Sáb Jul 20, 2013 15:22

Olá a todos.

Dada a função :

f(x)=\sqrt[3]{\frac{3}{x^2}}

Tenho dúvidas quanto à solução dada no livro de onde retirei a questão. Que é como se segue:

f^,(x)=-\frac{2\sqrt[5]{3}}{5}\cdot x^{-\frac{7}{5}

Tanto quanto sei a fórmula para a derivada de uma raiz é : y^,=m\cdotu^{m-1}\cdot u^,

ou, esta outra: y^,=\frac{1}{k\sqrt[k]{u^{k-1}}}\cdot u^,

A derivada do radicando,u= (\frac{3}{x^2}) aplicando a fórmula de resolução do quociente dá u^, =(-\frac{6}{x^3}). Aplicando no lugar correto da/s fórmula/s, e desenvolvendo qualquer uma delas na integra deveríamos chegar á solução dada. Facto que aliás não consegui.
A minha dúvida é a seguinte:__ Será que a solução está errada ? Ou me estão faltando alguns artifícios matemáticos para conseguir chegar a ela ?
Gostava que alguém resolvesse a questão na integra,até à simplificação máxima para verificação, e assim tirar minha dúvida.

Grato pela atenção
armando
Editado pela última vez por armando em Sáb Jul 20, 2013 16:17, em um total de 1 vez.
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor MateusL » Sáb Jul 20, 2013 15:49

Armando, apesar de ter ficado meio vago o seu pedido, acredito, pelo título deste tópico, que queres descobrir a derivada de f(x)

Basta notar que:

\dfrac{d x^n}{dx}=n\cdot x^{n-1}

E que f(x) pode ser escrito como:

f(x)=\sqrt[3]{3}\cdot x^\frac{-2}{3}

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor armando » Sáb Jul 20, 2013 16:44

Olá MateusL .

É possível que o meu pedido lhe parecesse meio vago no momento em que você o viu. Dado que logo no início,quando o estava iniciando me descuidei, e sem querer clikei em Enviar. Creio que foi esse o motivo.
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor MateusL » Sáb Jul 20, 2013 17:01

Armando, não seria f(x)=\sqrt[5]{\frac{3}{x^2}}?

Porque só assim o resultado iria fechar.

Se for, basta notar que:

f(x)=\sqrt[5]{3}\cdot x^{-\frac{2}{5}}

E, como \dfrac{dx^n}{dx}=n\cdot x^{n-1}:

\dfrac{df(x)}{dx}=\dfrac{d(\sqrt[5]{3}\cdot x^{-\frac{2}{5}})}{dx}=\sqrt[5]{3}\cdot \dfrac{d x^{-\frac{2}{5}}}{dx}=\sqrt[5]{3}\cdot \dfrac{-2}{5}\cdot x^{-\frac{2}{5}-1}=-\dfrac{2\sqrt[5]{3}}{5}\cdot x^{-\frac{7}{5}}

Qualquer dúvida, só perguntar!
Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]derivada de função de raiz cúbica

Mensagempor armando » Dom Jul 21, 2013 22:17

Olá Mateus.

De facto você tinha razão. Na verdade eu me enganei ao transcrever o enunciado aqui para o fórum. Efetivamente, como pude verificar com mais atenção no livro de onde o saquei, em vez de raiz cubica, está de facto raiz quinta. Assim, já consegui chegar à solução por uma das fórmulas que referi.
Obrigado por compartilhar a sua perspicácia, e me alertar para o meu erro.

Abraço !
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.