
e

respectivamente. Determine
e
, com
e
de modo que a distância de P e Q seja a menor possível.Bem, essa questão esta na seção de máximos e mínimos do meu livro de cálculo de varias variaveis em que estudo. Embora tenha resposta abaixo, eu não consigo entender em como ele obteu a resposta, se alguem puder ajudar...
Resposta:
e
são pontos arbitrários de
e
, respectivamente:
é a distância entre eles. Basta, então, determinar
que minimiza
.
e 


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)