• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas Parciais de função de uma variável real

Derivadas Parciais de função de uma variável real

Mensagempor Sohrab » Dom Mai 26, 2013 23:16

Seja \phi: \Re\rightarrow\Re uma função de uma variável real, diferenciável e tal que \phi\prime \left(1 \right) = 4.
Seja g(x,y) = \theta\left(\frac{x}{y} \right), calcule:

\frac{\delta g}{\delta x} \left(1,1 \right)

e

\frac{\delta g}{\delta y} \left(1,1 \right)

Estou com enorme dificuldade neste tipo de exercício galera, podem me dar uma força? Obrigado!!

Edit: consegui resolver, é muito fácil! Basta considerar g uma composta de fi e u, com u = x/y :p
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.