• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Calculo de limite usando o teorema do confronto.

[Limites] Calculo de limite usando o teorema do confronto.

Mensagempor erickm93 » Qua Mai 22, 2013 10:48

Olá, recentemente tive uma prova de Cálculo I e me surgiu uma duvida sobre a seguinte questão
Calcular o limite seguinte, utilizando o teorema do confronto, e provar sua existência através dos limites laterais, segue o limite:
\lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}

Utilizei o Wolfram Alpha para calcular este limite e ele me voltou a resposta como sendo 0, só que, minha professora corrigiu a prova e disse que este limite não existe. Minha dúvida é, qual das duas respostas está correta?

Obrigado desde já.
erickm93
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 22, 2013 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Física
Andamento: cursando

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor Man Utd » Qua Mai 22, 2013 12:21

na minha opinião \lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}, existe sim, pois pelo teorema do confronto e lembrando que a função seno é limitada em -1 e 1.
\\\\ -1\leq sen a \geq 1 \\\\ -1\leq sen(\frac{1}{x})\leq 1 \\\\ -1.\sqrt{x}\leq \sqrt{x}*sen(\frac{1}{x})\leq \sqrt{x}*1 \\\\ \lim_{x\rightarrow 0}-\sqrt{x}=0 \\\\ \lim_{x\rightarrow 0}\sqrt{x}=0 \\\\ entao pelo teorema do confronto,\lim_{x\rightarrow 0}\sqrt{x}*sen(\frac{1}{x})=0

porém \lim_{x\rightarrow 0}sen(\frac{1}{x}) não existe pois a função oscila,veja que limites laterais diferem muito:
x=0,00000001----------f(x)=sen(1/x)=-0,98...
x=0.00000002----------f(x)=sen(1/x)=-0,64...
x=0.00000003----------f(x)=sen(1/x)=-0,54...
x=0.00000004----------f(x)=sen(1/x)=0,34
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor LuizAquino » Qua Mai 22, 2013 20:27

erickm93 escreveu:Olá, recentemente tive uma prova de Cálculo I e me surgiu uma duvida sobre a seguinte questão
Calcular o limite seguinte, utilizando o teorema do confronto, e provar sua existência através dos limites laterais, segue o limite:
\lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}

Utilizei o Wolfram Alpha para calcular este limite e ele me voltou a resposta como sendo 0, só que, minha professora corrigiu a prova e disse que este limite não existe. Minha dúvida é, qual das duas respostas está correta?

Obrigado desde já.


Man Utd escreveu:na minha opinião \lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}, existe sim, pois pelo teorema do confronto e lembrando que a função seno é limitada em -1 e 1.
\\\\ -1\leq sen a \geq 1 \\\\ -1\leq sen(\frac{1}{x})\leq 1 \\\\ -1.\sqrt{x}\leq \sqrt{x}*sen(\frac{1}{x})\leq \sqrt{x}*1 \\\\ \lim_{x\rightarrow 0}-\sqrt{x}=0 \\\\ \lim_{x\rightarrow 0}\sqrt{x}=0 \\\\ entao pelo teorema do confronto,\lim_{x\rightarrow 0}\sqrt{x}*sen(\frac{1}{x})=0

porém \lim_{x\rightarrow 0}sen(\frac{1}{x}) não existe pois a função oscila,veja que limites laterais diferem muito:
x=0,00000001----------f(x)=sen(1/x)=-0,98...
x=0.00000002----------f(x)=sen(1/x)=-0,64...
x=0.00000003----------f(x)=sen(1/x)=-0,54...
x=0.00000004----------f(x)=sen(1/x)=0,34


Existe um motivo muito simples para este limite não existir: o limite lateral esquerdo não está definido.

Notem que no termo \sqrt{x} não podemos ter x\to 0^-, já que no conjunto dos números reais não temos a raiz quadrada de um número x < 0 (e vale lembrar que estamos tratando em Cálculo I apenas de funções reais).

Quando o referido programa calculou este limite, ele na verdade apenas considerou o limite lateral direito. Ou seja, na verdade ele calculou:

\lim_{x\to 0^+}{\sqrt{x}\sin \frac{1}{x}}

Observação

Este exercício é interessante para ilustrar que não se pode acreditar cegamente em um programa de computador. A pessoa que está usando o programa deve fazer uma interpretação dos dados para avaliar se a resposta fornecida é coerente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor erickm93 » Qua Mai 22, 2013 23:49

Obtive uma resposta de um colega que também achei interessante, ele me disse que o Wolfram calcula limites no conjunto dos complexos, por isso quando o mandei calcular aquele limite ele me retornou a resposta 0.
Agora com a sua resposta de que em Calculo I trabalhamos somente no conjunto dos reais, ficou ainda mais claro em minha mente a resposta para a dúvida que havia me surgido.
Agradeço pela atenção, abraços e até a próxima.
erickm93
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 22, 2013 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 49 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?