• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla] Volume do sólido

[Integral Dupla] Volume do sólido

Mensagempor KleinIll » Sex Abr 05, 2013 12:56

Calcule {\int_{}^{}}_{D}\int_{}^{}{\left(1 - x^2 - y^2 \right)}^{\frac{1}{2}} dA, onde D é o disco 1 \geq x^2 + y^2, identificando primeiro a integral como o volume de um sólido.
Бог не в силе, а в правде.
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Integral Dupla] Volume do sólido

Mensagempor Russman » Sex Abr 05, 2013 21:00

O 1° passo é verificar se há simetria no problema. Se sim, qual? Você sabe dizer?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral Dupla] Volume do sólido

Mensagempor KleinIll » Sáb Abr 06, 2013 00:47

Não. Esta é uma questão retirada do livro James Stewart Volume 2.

Edição: Não é necessário responder este tópico mais pois eu já consegui esclarecer minha dúvida. Depois de converter para coordenadas polares eu consegui integrar.

Russman, desculpa se eu estiver ofendendo, mas eu acho mais do que justo deixar claro que quando alguém pede ajuda aqui é porque não sabe fazer a conta/questão, então, ao invés responder com outra pergunta, responda a resolução. Novamente, desculpa se eu estou ofendendo.
Бог не в силе, а в правде.
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Integral Dupla] Volume do sólido

Mensagempor Russman » Sáb Abr 06, 2013 16:21

KleinIll escreveu:Russman, desculpa se eu estiver ofendendo, mas eu acho mais do que justo deixar claro que quando alguém pede ajuda aqui é porque não sabe fazer a conta/questão, então, ao invés responder com outra pergunta, responda a resolução. Novamente, desculpa se eu estou ofendendo.


Não ofendeu. Esse seu pensamento, que é lastimável, é muito comum. Se eu tivesse lhe resolvido a questão, isto é, tivesse lhe entregue a resolução, eu NÃO estaria lhe ajudando. Ajudar a resolver questões matemáticas é encaminhar um raciocínio que o guiará até a solução completa por si mesmo. Quem deve ser capaz de solucionar o problema é VOCÊ, e não eu, pois eu já sei. Afinal, se você sabe resolver somente este exercício(ou uma meia dúzia semelhante) você não sabe coisa alguma sobre integrais duplas.

KleinIll escreveu:Depois de converter para coordenadas polares eu consegui integrar.


A isto que eu me referia. O problema tem simetria polar. Assim, convertendo para o sistema polar de coordenadas o problema pode ser resolvido facilmente. Era esse o 1° passo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral Dupla] Volume do sólido

Mensagempor KleinIll » Sáb Abr 06, 2013 18:18

Concordo com você, sou eu quem precisa aprender e entendo que você queira primeiramente saber qual é minha dúvida especificadamente. Tudo bem, eu posso estar "errado" por pedir a resolução, mas eu tenho a consciência e a capacidade de distinguir o que é a minha dúvida e o que é um "tipo" de exercício. Inclusive quando eu posto alguma dúvida aqui, no site, eu adiciono o máximo de comentários possíveis. Nesta questão eu não tive este cuidado pois preferi ver a resolução completa. De qualquer forma, obrigado pela atenção e compreensão.
Бог не в силе, а в правде.
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?