Página 1 de 1

[Integral] Volume de Esfera

MensagemEnviado: Ter Mar 19, 2013 13:58
por klueger
Não sei deduzir esta fórmula... alguém pode ajudar?

O volume de um esfera de raio R é dado por V = \frac{4}{3}.pi.r^3.

Com o estudo de integrais podemos provar que realmente esta fórmula do volume é verdadeira, basta pensar que uma esfera de raio R é gerada pela rotação em torno do eixo x da circunferência x^2+y^2=r^2.

Sendo assim usando os conceitos de volume de sólido de revolução prove a fórmula do volume da esfera

Re: [Integral] Volume de Esfera

MensagemEnviado: Ter Mar 19, 2013 17:06
por e8group
Solução :

x^2 + y^2 = r \iff y^2 = r^2 - x^2   , - r \leq   x \leq r .

V = \pi \int_{-r}^r y^2 dx = 2\pi \int_{0}^r(r^2 - x^2) dx


Tente concluir ...

Re: [Integral] Volume de Esfera

MensagemEnviado: Ter Mar 19, 2013 17:13
por nakagumahissao
Resolução:

Demonstração:

Considere uma circunferência definida por:

x^{2} + y^{2} = r^{2}

Considere ainda, que iremos 'rotacionar' em torno do eixo x apenas a parte do círculo situada no primeiro quadrante do gráfico, ou seja:

y  = \sqrt[]{r^{2} - x^{2}} e x =[0, r]

Como rotacionaremos apenas a parte do círculo do nosso primeiro quadrante, após termos calculado o volume da figura rotacionada no gráfico, teremos então que multiplicá-lo por 2 para termos o volume total. Desta maneira:

V = 2\pi\int_{0}^{r} \left[\sqrt[]{r^{2} - x^{2}} \right]^{2} dx = 2\pi\int_{0}^{r} r^{2} - x^{2} dx =
= 2\pi \left( \int_{0}^{r} r^{2} dx - \int_{0}^{r} x^{2} dx \right) = 2\pi\left(r^{3} - \frac{r^{3}}{3} \right) =
= 2\pi \left(\frac{3r^{3} - r^{3}}{3} \right)
V = \frac{4\pi r^{3}}{3}

Como queríamos demonstrar.