• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Volume de Esfera

[Integral] Volume de Esfera

Mensagempor klueger » Ter Mar 19, 2013 13:58

Não sei deduzir esta fórmula... alguém pode ajudar?

O volume de um esfera de raio R é dado por V = \frac{4}{3}.pi.r^3.

Com o estudo de integrais podemos provar que realmente esta fórmula do volume é verdadeira, basta pensar que uma esfera de raio R é gerada pela rotação em torno do eixo x da circunferência x^2+y^2=r^2.

Sendo assim usando os conceitos de volume de sólido de revolução prove a fórmula do volume da esfera
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Volume de Esfera

Mensagempor e8group » Ter Mar 19, 2013 17:06

Solução :

x^2 + y^2 = r \iff y^2 = r^2 - x^2   , - r \leq   x \leq r .

V = \pi \int_{-r}^r y^2 dx = 2\pi \int_{0}^r(r^2 - x^2) dx


Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Volume de Esfera

Mensagempor nakagumahissao » Ter Mar 19, 2013 17:13

Resolução:

Demonstração:

Considere uma circunferência definida por:

x^{2} + y^{2} = r^{2}

Considere ainda, que iremos 'rotacionar' em torno do eixo x apenas a parte do círculo situada no primeiro quadrante do gráfico, ou seja:

y  = \sqrt[]{r^{2} - x^{2}} e x =[0, r]

Como rotacionaremos apenas a parte do círculo do nosso primeiro quadrante, após termos calculado o volume da figura rotacionada no gráfico, teremos então que multiplicá-lo por 2 para termos o volume total. Desta maneira:

V = 2\pi\int_{0}^{r} \left[\sqrt[]{r^{2} - x^{2}} \right]^{2} dx = 2\pi\int_{0}^{r} r^{2} - x^{2} dx =
= 2\pi \left( \int_{0}^{r} r^{2} dx - \int_{0}^{r} x^{2} dx \right) = 2\pi\left(r^{3} - \frac{r^{3}}{3} \right) =
= 2\pi \left(\frac{3r^{3} - r^{3}}{3} \right)
V = \frac{4\pi r^{3}}{3}

Como queríamos demonstrar.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 40 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}