• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Volume de Esfera

[Integral] Volume de Esfera

Mensagempor klueger » Ter Mar 19, 2013 13:58

Não sei deduzir esta fórmula... alguém pode ajudar?

O volume de um esfera de raio R é dado por V = \frac{4}{3}.pi.r^3.

Com o estudo de integrais podemos provar que realmente esta fórmula do volume é verdadeira, basta pensar que uma esfera de raio R é gerada pela rotação em torno do eixo x da circunferência x^2+y^2=r^2.

Sendo assim usando os conceitos de volume de sólido de revolução prove a fórmula do volume da esfera
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Volume de Esfera

Mensagempor e8group » Ter Mar 19, 2013 17:06

Solução :

x^2 + y^2 = r \iff y^2 = r^2 - x^2   , - r \leq   x \leq r .

V = \pi \int_{-r}^r y^2 dx = 2\pi \int_{0}^r(r^2 - x^2) dx


Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Volume de Esfera

Mensagempor nakagumahissao » Ter Mar 19, 2013 17:13

Resolução:

Demonstração:

Considere uma circunferência definida por:

x^{2} + y^{2} = r^{2}

Considere ainda, que iremos 'rotacionar' em torno do eixo x apenas a parte do círculo situada no primeiro quadrante do gráfico, ou seja:

y  = \sqrt[]{r^{2} - x^{2}} e x =[0, r]

Como rotacionaremos apenas a parte do círculo do nosso primeiro quadrante, após termos calculado o volume da figura rotacionada no gráfico, teremos então que multiplicá-lo por 2 para termos o volume total. Desta maneira:

V = 2\pi\int_{0}^{r} \left[\sqrt[]{r^{2} - x^{2}} \right]^{2} dx = 2\pi\int_{0}^{r} r^{2} - x^{2} dx =
= 2\pi \left( \int_{0}^{r} r^{2} dx - \int_{0}^{r} x^{2} dx \right) = 2\pi\left(r^{3} - \frac{r^{3}}{3} \right) =
= 2\pi \left(\frac{3r^{3} - r^{3}}{3} \right)
V = \frac{4\pi r^{3}}{3}

Como queríamos demonstrar.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59