• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite. Comecei estudar agora limites como resolvo isso?

limite. Comecei estudar agora limites como resolvo isso?

Mensagempor vinit » Ter Mar 12, 2013 12:26

\lim_{x\rightarrow\infty}\frac{{2x²}^{}-x+5}{{4x³}^{}-1}
vinit
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 12, 2013 12:12
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limite. Comecei estudar agora limites como resolvo isso?

Mensagempor Douglas16 » Ter Mar 12, 2013 14:40

Existe uma forma específica de determinar se um limite existe em função fracionária que é:
Em geral em uma função fracionária f(x)/g(x), se limite de f(x) é diferente de zero e limite de g(x) é igual a zero não existe um valor limite (finito).
Mas se limite de f(x) é igual a zero e limite de g(x) também é igual a zero então existe um valor limite (finito).
Então note que na função dada por você tanto o numerador quanto o denominador possuem valores diferentes de zero quando substituo o valor de r por infinito, mas também não dá um valor que se possa determinar com precisão, por isso divida cada termo do numerador e do denominador por x³, ou seja a variável de maior grau, perceba o que acontece com cada termo agora, quando x se aproxima do infinito, tipo: 1/x, por exemplo, se aproxima de zero, entende?, então considere como zero, e depois de considerar o que acontece com cada termo, você obterá um valor para o numerador e o denominador, então basta simplificar dividindo o numerador pelo denominador.
Se Deus quiser, posso passar mais exercícios especialmente para aprender sobre limites via skype, pois se for através de escrita fica muito pesado para mim.
Vai postando suas dúvidas...
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59