• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de primeira ordem.

Derivada de primeira ordem.

Mensagempor Sobreira » Sex Mar 08, 2013 01:14

Olá,
Na questão abaixo tentei derivar normalmente em relação a x mas a resposta não bate.
Então derivando utilizando a regra da cadeia deu a mesma resposta do livro, mas sinceramente não entendo porque utilizar regra da cadeia nesta questão.
É uma função composta? Se sim pq?

\frac{d}{dx}f(z)=sen\left(xy \right)

Como tentei resolver inicialmente:

f(z)=cos\left(xy \right)

Como resolvi por regra da cadeia mesmo sem saber o porque:

\frac{d}{dx}f(z)=\frac{d}{dx}sen\left(xy \right).\frac{d}{dx}xy

f(z)=cos\left(xy \right).y
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 121
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada de primeira ordem.

Mensagempor Russman » Sex Mar 08, 2013 04:49

A função é de duas variáveis x e y : f=f(x,y).

Sendo a função f(x,y) = \sin (xy), ou seja, o argumento da função seno não é simplesmente x ou y, você tem algo do tipo

f(x,y) = \sin (u)

onde u = xy.

Assim,

\frac{\partial }{\partial x}f(x,y) = \frac{\partial }{\partial x}\sin (u)=\frac{\partial }{\partial u}\sin (u).\frac{\partial u}{\partial x} = \cos (u)\frac{\partial u}{\partial x}

e a sua segunda solução está correta.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.