por Douglas16 » Qui Fev 28, 2013 12:30
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Jhonata » Qui Fev 28, 2013 13:41
Douglas16 escreveu:![\lim_{x\rightarrow-\propto}x\sqrt[]{x*x+1}+x*x \lim_{x\rightarrow-\propto}x\sqrt[]{x*x+1}+x*x](/latexrender/pictures/b9a901041cb0dd575d786979d7d9c3a3.png)
Podemos reescrever o limite:
![\lim_{x\rightarrow-\propto}x^2+x\sqrt[]{x^2+1} \lim_{x\rightarrow-\propto}x^2+x\sqrt[]{x^2+1}](/latexrender/pictures/35b8bf761da4e43b9360eb5d73c5d8d8.png)
E multiplicar o numerador e o denominador por:
![\frac{x^2-x\sqrt[]{x^2+1}}{x^2-x\sqrt[]{x^2+1}} \frac{x^2-x\sqrt[]{x^2+1}}{x^2-x\sqrt[]{x^2+1}}](/latexrender/pictures/0041d759dacf4b2adde4707e69735ed8.png)
Fazendo as operações algébricas necessárias no numerador, vamos obter:
![\lim_{x\rightarrow-\propto}\frac{x^4+x^3\sqrt[]{x^2+1}-x^3\sqrt[]{x^2+1}-x^2(x^2+1)}{x^2-x\sqrt[]{x^2+1}} \lim_{x\rightarrow-\propto}\frac{x^4+x^3\sqrt[]{x^2+1}-x^3\sqrt[]{x^2+1}-x^2(x^2+1)}{x^2-x\sqrt[]{x^2+1}}](/latexrender/pictures/7fcb7ec42222995957e141f1b9e916e6.png)
Simplificando:
![\lim_{x\rightarrow-\propto}\frac{x^4-x^4-x^2}{x^2-x\sqrt[]{x^2+1}} = \lim_{x\rightarrow-\propto}\frac{-x^2}{x^2-x\sqrt[]{x^2+1}}=\lim_{x\rightarrow-\propto}\frac{-x}{x-\sqrt[]{x^2+1}} \lim_{x\rightarrow-\propto}\frac{x^4-x^4-x^2}{x^2-x\sqrt[]{x^2+1}} = \lim_{x\rightarrow-\propto}\frac{-x^2}{x^2-x\sqrt[]{x^2+1}}=\lim_{x\rightarrow-\propto}\frac{-x}{x-\sqrt[]{x^2+1}}](/latexrender/pictures/2d379e475495f63275afbf1b7a172d51.png)
Tente resolver o limite a partir daí.
Boa sorte, abraços!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Resolução de um limite de uma função (a solução é -3)
por Douglas16 » Qua Fev 27, 2013 20:38
- 6 Respostas
- 2954 Exibições
- Última mensagem por Douglas16

Qua Fev 27, 2013 23:17
Cálculo: Limites, Derivadas e Integrais
-
- Função inversa, Solução
por Deronsi » Ter Nov 06, 2012 00:29
- 4 Respostas
- 2208 Exibições
- Última mensagem por Deronsi

Ter Nov 06, 2012 08:08
Funções
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3335 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO
por beel » Sex Set 02, 2011 15:14
- 2 Respostas
- 1719 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO 2
por beel » Sex Set 02, 2011 17:58
- 2 Respostas
- 1717 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.