• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] - LIMITES DE DUAS VARIAVEIS

[LIMITES] - LIMITES DE DUAS VARIAVEIS

Mensagempor Jol » Ter Fev 26, 2013 19:33

Ola pessoal, sou novo aki, portanto ainda não sei bem como funciona! haha. Mas desde ja, agradeço pelo site, sei que é de grande utilidade!
Bom vamos a duvida...existem dois limites que estou tendo dificuldades de resolver, principalmente em começar!

Este é o primeiro: Penso eu que poderia fazer pelo metodo do fog: lim f(g(x)), tentei..mais nao deu certo!

\lim_{(x,y)\rightarrow(0,2)}{(1+x)}^{\frac{1+xy}{x}}

Este é o segundo: Tentei racionaliza-lo, só que ainda ano poderia substituir os valores, pois o denominador iria zerar!

\lim_{(x,y)\rightarrow(1,1)}\frac{\sqrt[3]{xy}-1}{\sqrt[2]{xy}-1}


Desde ja, agradeço!
Jol
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 26, 2013 19:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITES] - LIMITES DE DUAS VARIAVEIS

Mensagempor young_jedi » Qua Fev 27, 2013 18:43

neste primeiro voce pode fazer

\lim_{(x,y)\to(0,2)}(1+x)^{\frac{1}{x}}.(1+x)^{\frac{yx}{x}}

\lim_{(x,y)\to(0,2)}(1+x)^{\frac{1}{x}}.(1+x)^{y}

mais sabemos que

\lim_{x\to0}(1+x)^{\frac{1}{x}}=e

e

\lim_{(x,y)\to(0,2)}(1+x)^{y}=1

portanto

\lim_{(x,y)\to(0,2)}(1+x)^{\frac{1}{x}}.(1+x)^{y}=1.e
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.