• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule o limite da sequência

Calcule o limite da sequência

Mensagempor Crist » Dom Fev 24, 2013 20:53

Preciso achar o limite da sequência e não estou conseguindo, acho que tenho que aplicar a regra de L' Hopital.
\left(\frac{ln (n+1)}{ln n} \right)
Alguém pode me ajudar?
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Calcule o limite da sequência

Mensagempor Russman » Dom Fev 24, 2013 21:52

Fazendo o limite para n \to \infty obtemos \frac{\infty }{\infty }, que é uma indeterminação.

Aplicando L'Hopital,

\underset{n \to \infty}{\lim } \left (\frac{\ln (n+1)}{\ln (n)}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{\frac{\mathrm{d} }{\mathrm{d} n}\ln (n+1)}{\frac{\mathrm{d} }{\mathrm{d} n}\ln (n)}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{\frac{1}{n+1}}{\frac{1}{n}}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{n}{n+1}  \right )

obtemos um novo limite que ainda calcula uma indeterminação. Dessa forma, devemos aplicar novamente L'Hopital. Fazendo isso resolvemos finalmente o limite.

\underset{n \to \infty}{\lim } \left (\frac{\frac{\mathrm{d} }{\mathrm{d} n}n}{\frac{\mathrm{d} }{\mathrm{d} n}n+1}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{1}{1}  \right ) =1.

Portanto,

\underset{n \to \infty}{\lim } \left (\frac{\ln (n+1)}{\ln (n)}  \right ) = 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Calcule o limite da sequência

Mensagempor Russman » Dom Fev 24, 2013 21:52

Fazendo o limite para n \to \infty obtemos \frac{\infty }{\infty }, que é uma indeterminação.

Aplicando L'Hopital,

\underset{n \to \infty}{\lim } \left (\frac{\ln (n+1)}{\ln (n)}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{\frac{\mathrm{d} }{\mathrm{d} n}\ln (n+1)}{\frac{\mathrm{d} }{\mathrm{d} n}\ln (n)}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{\frac{1}{n+1}}{\frac{1}{n}}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{n}{n+1}  \right )

obtemos um novo limite que ainda calcula uma indeterminação. Dessa forma, devemos aplicar novamente L'Hopital. Fazendo isso resolvemos finalmente o limite.

\underset{n \to \infty}{\lim } \left (\frac{\frac{\mathrm{d} }{\mathrm{d} n}n}{\frac{\mathrm{d} }{\mathrm{d} n}n+1}  \right ) = \underset{n \to \infty}{\lim } \left (\frac{1}{1}  \right ) =1.

Portanto,

\underset{n \to \infty}{\lim } \left (\frac{\ln (n+1)}{\ln (n)}  \right ) = 1.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Calcule o limite da sequência

Mensagempor Crist » Seg Fev 25, 2013 10:06

Obrigada, :)
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.