• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] limite trigonométrico quando x tende ao infinito

[Limite] limite trigonométrico quando x tende ao infinito

Mensagempor Ge_dutra » Seg Jan 28, 2013 10:13

Tenho dúvida em como achar o seguinte limite:

\lim_{x\to\infty} cosx. sen\left( \frac{\sqrt[]{x+1}-\sqrt[]{x}}{x}\right)

Poderiam me ajudar a resolver?

Desde já, obrigada!
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limite] limite trigonométrico quando x tende ao infinit

Mensagempor e8group » Ter Jan 29, 2013 00:20

Boa noite .
Veja que \frac{\sqrt{x+1} -\sqrt{x}}{x} = \frac{1}{x(\sqrt{x+1}+\sqrt{x})} . Porém o limite só ocorrerá quando x \to + \infty devido ao domínio da função .


Assim , \lim_{x\to +\infty} cos(x) sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right ) = \lim_{x\to +\infty} cos(x) \cdot \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )

Como \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )  = sin(0) = 0 .

Então : \lim_{x\to +\infty} cos(x) \cdot \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )  = \lim_{x\to +\infty} cos(x) \cdot 0  = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] limite trigonométrico quando x tende ao infinit

Mensagempor Ge_dutra » Ter Jan 29, 2013 14:20

santhiago escreveu:Boa noite .
Veja que \frac{\sqrt{x+1} -\sqrt{x}}{x} = \frac{1}{x(\sqrt{x+1}+\sqrt{x})} . Porém o limite só ocorrerá quando x \to + \infty devido ao domínio da função .


Assim , \lim_{x\to +\infty} cos(x) sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right ) = \lim_{x\to +\infty} cos(x) \cdot \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )

Como \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )  = sin(0) = 0 .

Então : \lim_{x\to +\infty} cos(x) \cdot \lim_{x\to +\infty}  sin\left(\frac{1}{x(\sqrt{x+1}+\sqrt{x})} \right )  = \lim_{x\to +\infty} cos(x) \cdot 0  = 0



Muito Obrigada, entendi perfeitamente!
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}