• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Exponencial

[Limites] Exponencial

Mensagempor Marlon Teofilo » Ter Jan 22, 2013 14:23

Oi boa tarde.

Estou com dificuldades em resolver um limite.

é o seguinte:

\lim_{\infty}{(\frac{x+1}{x-1})}^{2x}

entao, iniciei separando em duas frações, ambas com demoninador (x-1), fazendo os limites separados.

\lim_{\infty}{(\frac{x}{x-1})}^{2x} + \lim_{\infty}{(\frac{1}{x-1})}^{2x}

O segundo termo cheguei à conclusão que é 1/infinito=0

O primeiro termo conclui que a resposta do limite é e^2, após mudar a base e todo aquele processo de sempre, hehehehe, gostaria de saber se está correto, pois desconfio que não! kkkkkkkk
Marlon Teofilo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jan 07, 2013 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor e8group » Ter Jan 22, 2013 17:43

Cuidado!

\left( \frac{x + 1}{x-1}\right)^{2x}  \neq  \left( \frac{x}{x-1}\right)^{2x}  + \left( \frac{1}{x-1}\right)^{2x}


Como dica note que , \frac{x + 1}{x-1} =  1  + \frac{2}{x-1} .

Logo , \left( \frac{x + 1}{x-1}\right)^{2x} =  \left( 1 +  \frac{2}{x-1}\right)^{2x}

e portanto , \lim_{x\to \infty} \left(\frac{x+1}{x-1} \right )^{2x}  = \lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x} .

Além disso , tomando w =  \frac{2}{x-1} .Quando x \to \infty  , w \to 0 .Fazendo as substituições ,

\lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x}  =  \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}

Usando as propriedades a^{b+c} = a^b \cdot a^c e a^{b\cdot c} = \left(a^{b}\right)^{c} e também dos limites, uma delas do produto .

Segue então : \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}  =  \left[\lim_{w\to 0} \left(1 + w \right ) ^{1/w }\right]^4 \cdot \lim_{w\to 0} (1 + w) = e^4 .

Obs.: Para compreender a resolução veja os limites fundamentais em especial o limite fundamental que denomina-se o número Euler . Para ler mais , http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Euler .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor Marlon Teofilo » Ter Jan 22, 2013 18:01

Obrigado, minha duvida realmente era se eu utilizei a propriedade de forma correta, e errei hehehehe

vlw mano, entendi!!!
Marlon Teofilo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jan 07, 2013 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor lyppeferreira_ » Sáb Abr 04, 2020 15:33

e8group escreveu:Cuidado!

\left( \frac{x + 1}{x-1}\right)^{2x}  \neq  \left( \frac{x}{x-1}\right)^{2x}  + \left( \frac{1}{x-1}\right)^{2x}


Como dica note que , \frac{x + 1}{x-1} =  1  + \frac{2}{x-1} .

Logo , \left( \frac{x + 1}{x-1}\right)^{2x} =  \left( 1 +  \frac{2}{x-1}\right)^{2x}

e portanto , \lim_{x\to \infty} \left(\frac{x+1}{x-1} \right )^{2x}  = \lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x} .

Além disso , tomando w =  \frac{2}{x-1} .Quando x \to \infty  , w \to 0 .Fazendo as substituições ,

\lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x}  =  \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}

Usando as propriedades a^{b+c} = a^b \cdot a^c e a^{b\cdot c} = \left(a^{b}\right)^{c} e também dos limites, uma delas do produto .

Segue então : \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}  =  \left[\lim_{w\to 0} \left(1 + w \right ) ^{1/w }\right]^4 \cdot \lim_{w\to 0} (1 + w) = e^4 .

Obs.: Para compreender a resolução veja os limites fundamentais em especial o limite fundamental que denomina-se o número Euler . Para ler mais , http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Euler .



Como você chegou nessa \frac{x + 1}{x-1} =  1  + \frac{2}{x-1}
Tô travado nessa passagem. Eu tentei pela propriedade do quociente dos limites, mas não cheguei nesse resultado que vc conseguiu.
lyppeferreira_
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 04, 2020 08:03
Formação Escolar: ENSINO MÉDIO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor adauto martins » Dom Abr 05, 2020 11:20

...(x+1)/(x-1)=x/(x-1)+1/(x-1)=((x-1)+1)/(x-1)+1/(x-1)


=(x-1)/(x-1)+1/(x-1)+1/(x-1)=1+1/(x-1)+1/(x-1)=1+2/(x-1)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?