• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Indefinida

Integral Indefinida

Mensagempor Claudin » Sáb Jan 19, 2013 12:46

A questão seguinte resolvi de um jeito, e gostaria de saber qual seria o certo.
\int_{}^{}tgx.sec^2x dx

Substituindo u=tgx temos que du=sec^2xdx

E assim obtive, \int_{}^{}u

Portanto ficaria \int_{}^{}tgx = ln|secx|+c ou \int_{}^{}\frac{u^2}{2} = \frac{tg^2x}{2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral Indefinida

Mensagempor e8group » Sáb Jan 19, 2013 17:52

Por favor observe este tópico viewtopic.php?f=120&t=10905 .Faça a mesma substituição a qual eu sugerir (mas nada impeça que adote outra substituição ) .

Observe que tan(x) sec^2(x) = \frac{sin(x)}{cos^3(x)} .

Mas se adotar u  = tan(x) \implies   du = sec^2(x) dx .

Então , \int tan(x) sec^2(x) dx  = \int u du  =  \frac{u^{1+1}}{1+1} + c .

revise seus caculos.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)