• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral envolvendo módulo]

[integral envolvendo módulo]

Mensagempor Fabio Wanderley » Sex Dez 14, 2012 11:14

Bom dia a todos!

Já fiz Cálculo I, mas nunca estudei a integral de uma função em que a variável está dentro de módulo.

No caso, tenho o seguinte exercício:

Determinar o valor de k que satisfaça:

\int_{-\infty}^{+\infty}k\,e^{-|x-1|}\,dx=1

Alguém pode me ajudar?

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [integral envolvendo módulo]

Mensagempor young_jedi » Sex Dez 14, 2012 11:59

primeiro voce tem que fazer uma analise do modulo

se x>1 então

|x-1|=x-1

agora, se x<1 então

|x-1|=1-x

então voce separa a integral em duas partes

\int_{-\infty}^{1}k.e^{-(1-x)}dx+\int_{1}^{\infty}k.e^{-(x-1)}dx

resolvendo as duas integrais e igualando a 1 voce encontra o valor de k
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [integral envolvendo módulo]

Mensagempor Fabio Wanderley » Sex Dez 14, 2012 14:40

Muito obrigado, young_jedi!

Eu postei que nunca havia feito uma integral assim, mas quando vi sua explicação, eu me lembrei de ter feito um exercício envolvendo módulo. A questão é interessante para avaliarmos os intervalos de integração.

Para constar, k=\frac{1}{2}.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [integral envolvendo módulo]

Mensagempor young_jedi » Sex Dez 14, 2012 16:04

acho que é isso mesmo k=1/2

nas minhas contas aqui deu este valor tambem

ate mais Fabio Wanderley
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}