• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[função limitada] como reconhecer uma?

[função limitada] como reconhecer uma?

Mensagempor Fabio Wanderley » Dom Dez 09, 2012 20:07

Boa noite a todos,

Alguém pode mostrar uma forma prática para se afirmar se uma dada função é limitada ou não?

Por exemplo, a função \frac{x^2}{x^2+y^2} é limitada. Eu percebo isso intuitivamente. Mas gostaria de aprender uma forma de demonstrar formalmente.

Outro exemplo é a função \frac{x}{x^2+y^2}. Esta não é limitada (vi em um livro). Porém nem intuitivamente consigo notar isso. Assim, gostaria de aprender uma técnica ou demonstração formal a fim de apontar se uma dada função é limitada ou não.

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [função limitada] como reconhecer uma?

Mensagempor e8group » Dom Dez 09, 2012 22:29

Para verificar se a função é limitada ,devemos observar se existe uma cosntante (número) pertencente ao domínio da função tal que o valor absoluto da sua imagem é menor ou igual a esta constante para quaisquer que seja os elementos pertencentes ao domínio da função . Ex.

A função f definida por sin(x) é limitada , pois \forall x\in D(f) \implies  | f(x) | \leq 1 .Neste caso Im(f) \in [-1
,1]   \forall x \in \mathbb{R} . Faça uma analogia com funções duas variáveis .


Vamos mostra que \frac{x^2}{x^2 +y^2} é uma função limitada .Primeiro note que ,
x^2  + y^2 \neq 0 .Isto contradiz apenas quando x = y = 0 . Portanto se x = 0 vamos ter y \neq 0 e vice-versa .

Para x = 0  , y \neq 0 temos \frac{x^2}{x^2 +y^2} = 0 e para y = 0 , x \neq 0 segue \frac{x^2}{x^2 +y^2} =  1 . Agora para x , y \neq 0 vamos ter que :


0 < \frac{x^2}{x^2 +y^2} < 1 . Note que, \forall (x,y) \in \mathbb{R} ^2 \implies  x^2 + y^2 > x^2 .Tome x = - 1 e y = - 3 é fácil ver que (-1)^2 + (-3)^2 > (-1)^2 e assim sucessivamente .

\frac{x}{x^2 + y^2} não podemos fazer a mesma afirmação .

Vale ressaltar que isto é apenas uma idéia intuitiva.Como estar a demonstração no livro ? Se tiver como , poderia postar aqui por favor ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [função limitada] como reconhecer uma?

Mensagempor MarceloFantini » Dom Dez 09, 2012 23:56

Dada uma função arbitrária não dá pra saber se ela é limitada ou não. Normalmente descobre-se isto tomando limites, calculando as derivadas, etc, mas não existe um método propriamente para detectar se a função é limitada ou não.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [função limitada] como reconhecer uma?

Mensagempor Fabio Wanderley » Seg Dez 10, 2012 10:53

Muito obrigado pela ajuda, santhiago e MarceloFantini!

santhiago escreveu:Como estar a demonstração no livro ? Se tiver como , poderia postar aqui por favor ?


santhiago, o autor não faz a demonstração. Ele só coloca para as duas funções um "note que".

Saudações!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 55 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D