• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Dan » Seg Set 14, 2009 09:52

Olá gente! Não estou conseguindo resolver a seguinte integral:\int_{1}^{5}x.\sqrt[]{x-1}.dx

Tentei fazer por {u}^{m}, e como a derivada do que está dentro da raíz é igual a 1, falta um x para cortar.

Alguém poderia me ajudar?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor Elcioschin » Seg Set 14, 2009 11:27

Fazendo u = x - 1 temos:

x = u + 1
dx = du
V(x - 1) = (x - 1)^(1/2) = u^(1/2)

x*V(x -1) = (u + 1)*u^(1/2) = u^(3/2) + u^(1/2)

Integrando, obtém-se ----> (2/5)*u^(5/2) + (2/3)*u^(3/2)

Sunstituindo u ----> (2/5)*(x - 1)^(5/2) - (2/3)(x - 1)^(3/2)

Limite superior 5 -----> (2/5)*4^(5/2) - (2/3)*4^(3/2) = (2/5)*32 - (2/3)*8 = 64/5 - 16/3 = 112/15

Limite inferior 1 -----> 0

Solução ----> 112/15
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Integral

Mensagempor Dan » Seg Set 14, 2009 11:38

Obrigado, Elcioschin.

Infelizmente ainda não aprendi substituição ou integral por partes pois só comecei com as integrais definidas semana passada.

Ficou confuso.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor Dan » Ter Set 15, 2009 12:38

De qualquer forma eu ainda vou aprender isso na faculdade. Era apenas curiosidade. Já conversei com uma amiga minha que é profe de matemática e ela me explicou.

Elcioschin, não quero que leve a mal o que vou te dizer, mas eu acho que não basta mostrar que você sabe fazer os problemas se as outras pessoas continuam com dúvidas. Quando eu entrei nesse fórum, apareceu uma janela que falava em interação. A interação deve existir por parte de quem responde também.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor Dan » Ter Set 15, 2009 18:07

Ah, e só pra constar...

No livro a resposta é 18.\frac{2}{15}.

Tem certeza que a sua resposta está certa?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor Elcioschin » Ter Set 15, 2009 23:54

Dan

Respondendo suas dúvidas e questionamentos:

1) A substituição que eu fiz foi muito bem explicada. Não sei porque você disse que "ficou confuso".

2) A partir da substituição a integração é bem básica, exatamente como você disse que tentou com u^m: Note que temos duas integrais: u^(3/2) e u^(1/2).

3) Quanto à minha solução, houve apenas uma troca de sinal na penúltima e última linha. Vou mostrar abaixo e editar em vermelho no original:

Integrando, obtém-se ----> (2/5)*u^(5/2) + (2/3)*u^(3/2)

Substituindo u ----> (2/5)*(x - 1)^(5/2) + (2/3)(x - 1)^(3/2)

Limite superior 5 -----> (2/5)*4^(5/2) + (2/3)*4^(3/2) = (2/5)*32 + (2/3)*8 = 64/5 + 16/3 = 272/15 = 18 2/15

Limite inferior ----> 0

Solução ----> 18 2/15


4) Não entendío motivo de você dizer que eu não estou interagindo:

a) Você postou a questão no dia 14/09 às 08:52
b) Eu respondí a questão no MESMO dia às 10:27
c) No mesmo dia você enviou uma resposta às 10:32
d) No dia 15 você manda nova mensagem às 11:38, SEM AGUARDAR uma resposta minha.

Acho que você deve imaginar que eu fico integralmente no computador aguardando as suas mensagens.
Porém, não é o que acontece: além de trabalhar e de ter outras ocupações, eu participo também de outros dois foruns.

Assim, não acho justa a sua reclamação. Espero que, da próxima vez, você tenha um pouco mais de paciência.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Integral

Mensagempor Dan » Qua Set 16, 2009 08:58

Olá Elcioschin.

Não, não espero que você fique a meu serviço respondendo todas as minhas dúvidas. Aliás, agradeço a sua participação e sei que você fez tudo de boa fé.
Acontece que você, engenheiro formado, talvez não compreenda as dúvidas de um estudante de primeiro ano de faculdade. Eu estou começando a aprender integrais. O que para você é uma explicação completa, ficou bastante vago para mim. Aprendi poucos métodos, poucas coisas, e eu ainda não consegui compreender por que essa integral é resolvida dessa maneira, pelo menos pela sua explicação.

Você poderia ter me explicado o que é o "u" e o que é o "v" na sua maneira de resolver. É óbvio para você? Mas não para mim! É nisso que eu falo quando eu me refiro à interação. Você soube resolver muito bem a integral, mas infelizmente não conseguiu passar esse conhecimento para quem estava com a dúvida.

De qualquer forma, muito obrigado por responder à minha dúvida. Eu também poderia ter explicado melhor que pontos ficaram confusos na sua explicação.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.