• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Claudin » Sáb Dez 01, 2012 17:26

Não sei como resolver o seguinte exercicio

Mostre que s e f for uma função continua [a,b] então |\int_{a}^{b}f(x)dx|\leq\int_{a}^{b}|f(x)|dx

Sugestão: -|f(x)|\leqf(x)\leq|f(x)|

Use o exercicio anterior e prove também que

|\int_{0}^{2\Pi}f(x)sen(2x)dx|\leq\int_{0}^{2\Pi}|f(x)|dx

Não nem como começar em ambos os exercícios.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral

Mensagempor LuizAquino » Ter Dez 11, 2012 14:26

Claudin escreveu:Não sei como resolver o seguinte exercicio

Mostre que s e f for uma função continua [a,b] então |\int_{a}^{b}f(x)dx|\leq\int_{a}^{b}|f(x)|dx

Sugestão: -|f(x)|\leq f(x)\leq|f(x)|

Use o exercicio anterior e prove também que

|\int_{0}^{2\Pi}f(x)sen(2x)dx|\leq\int_{0}^{2\Pi}|f(x)|dx

Não nem como começar em ambos os exercícios.


Comece usando a sugestão:

-|f(x)|\leq f(x)\leq|f(x)|

Como f é contínua em [a, b] (e portanto |f| também é contínua em [a, b]), podemos integrar cada parte dessa inequação, obtendo assim:

- \int_a^b |f(x)|\,dx \leq \int_a^b f(x)\,dx \leq \int_a^b |f(x)|\,dx

Por outro lado, temos que:

|f(x)| \geq 0

\int_a^b |f(x)|\, dx \geq \int_a^b 0\,dx

\int_a^b |f(x)|\, dx \geq 0

Além disso, dos conhecimentos sobre módulos, sabemos que se -u \leq v \leq u e u \geq 0, então |v|\leq u . Usando esse conhecimento com u = \int_a^b |f(x)|\, dx e v = \int_a^b f(x)\,dx, concluímos que:

- \int_a^b |f(x)|\,dx \leq \int_a^b f(x)\,dx \leq \int_a^b |f(x)|\,dx \implies \left|\int_a^b f(x)\,dx\right| \leq \int_a^b |f(x)|\,dx

Usando esse resultado no outro exercício:

\left|\int_{0}^{2\pi}f(x)\,\textrm{sen}\, 2x\,dx\right| \leq \int_{0}^{2\pi} |f(x)\,\textrm{sen}\, 2x|\,dx

Em seguida, usando a propriedade dos módulos dada por |ab|=|a||b|, temos que:

\left|\int_{0}^{2\pi}f(x)\,\textrm{sen}\, 2x\,dx\right| \leq \int_{0}^{2\pi} |f(x)||\,\textrm{sen}\, 2x|\,dx

Agora basta concluir o exercício usando o fato de que |\,\textrm{sen}\,\alpha|\leq 1 para qualquer ângulo \alpha .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 23 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}