• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Máximo e mínimo com duas Variáveis

Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 08:19

z=x^4+y^4-2x^2 - 4xy-2y^2

o prof deu esse e alguns outro exercícios para estudar em casa, esse eu estou com dificuldade para fazer porque depois que eu derivo em relação a x e a y faço o sistema e somo as duas equações está dando x = y e ai eu não consigo descobrir a discriminante será que alguém consegue me ajudar?
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Sáb Nov 24, 2012 15:55

Você poderia mostrar suas contas? Não necessariamente está errado, pela sua descrição parece que faltam algumas contas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Sáb Nov 24, 2012 23:25

posso sim, vamos lá

dz/dx = 4x^3 - 4x - 4y
dz/dy = 4y^3 - 4x - 4y

somei as 2, deu:

4x^3 - 4y^3 = 0
4x^3 = 4y^3
x^3 = 4y^3/4
x = \sqrt{y^3} (aqui é raiz cubica ta, eu não consegui fazer o simbolo)

e ai vai ficar:

x = y

fazendo as derivadas de segunda ordem:

dz^2/dx^2 = 12x^2 - 4 = A
dz^2/dy^2 = 12y^2 - 4 = C
dz^2/dxdy = -4 =B

Delta = A*C - B^2

(12x^2 -4) * (12y^2 -4) -(-4)^2

eu travei aqui, não sei como continuar
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Dom Nov 25, 2012 19:30

Vamos lá. Primeiro, vamos corrigir sua notação: a que usou significa derivada total, enquanto a correta para derivadas parciais é \frac{\partial f}{\partial x}. Então

\begin{cases}
\frac{\partial z}{\partial x} = 4x^3 -4x -4y = 0, \\
\frac{\partial z}{\partial y} = 4y^3 -4x -4y =0.
\end{cases}

Subtraindo você encontrou que x=y. Substituindo na primeira equação vem 4x^3 -4x -4x = 4(x^3 -2)=0, logo x = y = \sqrt[3]{2} e o par (\sqrt[3]{2}, \sqrt[3]{2}) talvez seja máximo ou mínimo.

Calculando as derivadas de segunda ordem temos

\begin{cases}
\frac{\partial^2 z}{\partial x^2} = 12x^2 -4, \\
\frac{\partial^2 z}{\partial y^2} = 12y^2 -4, \\
\frac{\partial^2 z}{\partial x \partial y} = -4.
\end{cases}

Logo o Hessiano será H(x,y) = (12x^2 -4) \cdot (12y^2 -4) - (-4)^2. Substituindo o ponto (\sqrt[3]{2}, \sqrt[3]{2}) temos que H(\sqrt[3]{2}, \sqrt[3]{2}) > 0, portanto um ponto de mínimo local.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 08:52

MarceloFantini escreveu: 4x^3 -4x -4x = 4(x^3 -2)=0

não entendi aqui! :S
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Máximo e mínimo com duas Variáveis

Mensagempor MarceloFantini » Ter Nov 27, 2012 19:09

Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Máximo e mínimo com duas Variáveis

Mensagempor rhmgh » Ter Nov 27, 2012 23:00

MarceloFantini escreveu:Note que 4x^3 -4x -4x = 4x^3 - 8x = 4(x^3 -2) = 0. Eu apenas pulei uma passagem.


ahhhhhh tahh, e também agora que eu percebi que como o x = y você subsituiu ali, não tinha pensado assim ... dããã ... kkk

valeu cara, muito obrigado! :D
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D