• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CURVAS] Equação da reta tangente e ortogonalidade

[CURVAS] Equação da reta tangente e ortogonalidade

Mensagempor inkz » Ter Nov 20, 2012 04:22

MOSTRE QUE AS CURVAS e^t, e^{2t}, 1-e^{-t} E (1-, cos\theta, sen\theta) SE INTERSECTAM NO PONTO (1,1,0). DETERMINE AS EQUAÇÕES DAS RETAS TANGENTES ÀS CURVAS EM (1,1,0) E VERIFIQUE QUE ELAS SÃO ORTOGONAIS.


Não consegui mostrar que elas se intersectam neste ponto.. alguém poderia me auxiliar?

Quanto ao resto do exercício, basta eu encontrar suas derivadas no ponto e verificar se o produto escalar entre elas é nulo?

Desde já, agradeço as respostas!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] Equação da reta tangente e ortogonalidade

Mensagempor MarceloFantini » Ter Nov 20, 2012 10:02

Tome t=0 nas duas curvas. Então na primeira você terá (e^0, e^{2 \cdot 0}, 1 - e^{-0}) = (1, 1, 0), enquanto que na segunda terá (1, 1, 0). Logo elas se interseccionam em t=0.

Para resolver a segunda parte é só fazer o que disse: calcular a derivada e fazer o produto escalar. Verá que é nulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] Equação da reta tangente e ortogonalidade

Mensagempor inkz » Ter Nov 20, 2012 11:58

Tem razão, MarceloFantini. Tenho que agradecer pela sua ajuda, novamente :-D

mas uma coisa ainda me intriga. t=0 talvez seja um valor 'óbvio', ou no mínimo razoável de se testar. mas e se fosse um t =/= 0, algo que não desse para se perceber assim, 'de cara', haveria algum método algébrico de se chegar neste valor de t?

grande abraço!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [CURVAS] Equação da reta tangente e ortogonalidade

Mensagempor MarceloFantini » Ter Nov 20, 2012 12:15

Não tem nada de especial por ser t=0. Em geral para encontrar a interseção igualamos os vetores, logo

\begin{cases}
e^t = 1, \\
e^{2t} = \cos t, \\
1 - e^{-t} = \sin t.
\end{cases}

A solução desse sistema dará o instante em que a interseção ocorre, bastando substituir em uma delas para encontrar o ponto.

A questão é que se não for tão óbvio, muito provável serão necessários métodos numéricos para encontrar, isto se a interseção existir.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [CURVAS] Equação da reta tangente e ortogonalidade

Mensagempor inkz » Ter Nov 20, 2012 12:34

hmm, agora me esclareceu, Marcelo :-D

obrigado por todas as respostas :y: :y: :y:


o detalhe é que eu jamais conseguiria resolver um sistema desses *-) *-)
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}