• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral pelo método de fraçoes parciais

integral pelo método de fraçoes parciais

Mensagempor Crist » Seg Nov 12, 2012 22:05

não consigo começar essa integral, já tentei fazer a divisão , mas estou com dúvida quanto ao resultado, vejam

\int_{1}^{2}x^2 / (2x + 1 ) ( x + 2 )2   dx\approx 0,045
Crist
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Out 24, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: integral pelo método de fraçoes parciais

Mensagempor young_jedi » Ter Nov 13, 2012 12:18

primerio voce tem que separar ele em frações

\frac{x^2}{(2x+1)(x+2)}=\frac{ax+b}{2x+1}+\frac{cx}{x+2}

\frac{x^2}{(2x+1)(x+2)}=\frac{ax^2+bx+2ax+2b+2cx^2+cx}{(2x+1)(x+2)}

\frac{x^2}{(2x+1)(x+2)}=\frac{(a+2c)x^2+(b+2a+c)x+2b}{(2x+1)(x+2)}

portanto b=0

a+2c=1
2a+c=0

c=\frac{2}{3}

a=-\frac{1}{3}

então

\frac{x^2}{(2x+1)(x+2)}=\frac{-\frac{1}{3}x}{2x+1}+\frac{\frac{2}{3}x}{x+2}

-\frac{1}{3}\frac{x}{2x+1}+\frac{2}{3}\frac{x}{x+2}=

-\frac{1}{6}\frac{2x+1-1}{2x+1}+\frac{2}{3}\frac{x+2-2}{x+2}=

-\frac{1}{6}\left(\frac{2x+1}{2x+1}-\frac{1}{2x+1}\right)+\frac{2}{3}\left(\frac{x+2}{x+2}-\frac{2}{x+2}\right)=

-\frac{1}{6}\left(1-\frac{1}{2x+1}\right)+\frac{2}{3}\left(1-\frac{2}{x+2}\right)

substitua na integral e calcule
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)