• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da Reta Tangente

Equação da Reta Tangente

Mensagempor Saturnino Nataniel » Ter Nov 06, 2012 21:42

Olá pessoal, tenho dúvida na seguinte questão:
Sabendo que 2y+4x-6=0 é a equação de uma das retas que é a tangente a curva y= 2x^3-x^2+cx+d, determine a derivada desta função em um dos pontos da curva.

Como é que eu acho o ponto comum?
Saturnino Nataniel
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Jul 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: Equação da Reta Tangente

Mensagempor e8group » Qua Nov 14, 2012 10:27

Basta lembra que a equação da reta tangente a uma curva no ponto a será ,

y -  f(a) = f'(a) (x-a)  .

Tomando a primeira derivada a curva y= 2x^3-x^2+cx+d , vamos obter , y' =   6x^2 - 2x + c .

Daí , a equação da reta tangente será , y - y(x= a ) =    y'(x = a )  ( x - a ) . Perceba que , y' é a taxa de variação da reta tangente a curva y . Pelo enunciado sabemos que 2y+4x-6=0  \implies  y =  - 2x + 3 é uma das retas tangentes a curva , isso significa que para um y' (a) temos que y  =  y'(a) x   + a\cdot y'(a) +  y(a)   =   - 2x + 3      \iff     \begin{cases}    y'(a) =  - 2  \\   a\cdot y'(a) +  y(a) = 3  \end{cases}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.