• Anúncio Global
    Respostas
    Exibições
    Última mensagem

quais os Passos para derivar essa função

quais os Passos para derivar essa função

Mensagempor Netolucena » Seg Nov 05, 2012 20:43

Produto depois cadeia ?
cadeia depois produto ?
Não sei como desenvolver
y = {e}^{x}(x^2+1)tgx
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando

Re: quais os Passos para derivar essa função

Mensagempor MarceloFantini » Seg Nov 05, 2012 21:07

Apenas regra do produto resolve, não tem composição de funções. Você tem apenas o produto das três funções f(x) = e^x, g(x) = x^2 +1 e h(x) = \tan x, portanto

(fgh)'(x) = (f(x)(g(x)h(x))' = f'(x) g(x) h(x) + f(x) (g(x)h(x))'

= f'(x) g(x) h(x) + f(x)(g'(x) h(x) + g(x) h'(x))

= f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: quais os Passos para derivar essa função

Mensagempor e8group » Seg Nov 05, 2012 21:15

Mas , se reescrevermos ,

tan(x) =   sin(x) (cos(x))^{-1} , teremos regra da cadeia sim . É uma opção mais trabalhosa . Caso não lembre da derivada de tan(x) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.