• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada] derivada pela definição da secante

[derivada] derivada pela definição da secante

Mensagempor TheKyabu » Sáb Out 27, 2012 23:24

Bom o exercicio deve ser simples mas n to conseguindo fazer,
sec'(x)= \lim_{h\rightarrow0}\frac{sec(x +h)-secx}{h}
ai tentei fazer x + h = u,trocando as incognitas,mas n consegui resolver,me ajudem ai por favor :-D
vlw
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [derivada] derivada pela definição da secante

Mensagempor MarceloFantini » Dom Out 28, 2012 00:32

Não é tão simples assim, você precisa primeiro descobrir qual é a relação para secante da soma de arcos. Sabemos que

\sec (x+h) = \frac{1}{\cos (x+h)},

daí

\frac{1}{\cos (x+h)} = \frac{1}{\cos x \cos h - \sin x \sin h} = \frac{\cos x \cos h + \sin x \sin h}{(\cos x \cos h)^2 - (\sin x \sin h)^2}.

Parece ser uma expressão bem complicada, e desnecessária. Você não tem acesso ainda às regras de derivação usuais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [derivada] derivada pela definição da secante

Mensagempor TheKyabu » Dom Out 28, 2012 11:44

Pois é,ainda n tenho to acompanhando o livro do guidorizzi,ai to no inicio de derivadas e apareceu eses exercicio ai,
pelo q vc diz,parece q da pra resolver esses exercicio mais facilmente,com outras tecnicas de derivaçao neh
vlw ai pela ajuda
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)