• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada] derivada pela definição da secante

[derivada] derivada pela definição da secante

Mensagempor TheKyabu » Sáb Out 27, 2012 23:24

Bom o exercicio deve ser simples mas n to conseguindo fazer,
sec'(x)= \lim_{h\rightarrow0}\frac{sec(x +h)-secx}{h}
ai tentei fazer x + h = u,trocando as incognitas,mas n consegui resolver,me ajudem ai por favor :-D
vlw
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [derivada] derivada pela definição da secante

Mensagempor MarceloFantini » Dom Out 28, 2012 00:32

Não é tão simples assim, você precisa primeiro descobrir qual é a relação para secante da soma de arcos. Sabemos que

\sec (x+h) = \frac{1}{\cos (x+h)},

daí

\frac{1}{\cos (x+h)} = \frac{1}{\cos x \cos h - \sin x \sin h} = \frac{\cos x \cos h + \sin x \sin h}{(\cos x \cos h)^2 - (\sin x \sin h)^2}.

Parece ser uma expressão bem complicada, e desnecessária. Você não tem acesso ainda às regras de derivação usuais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [derivada] derivada pela definição da secante

Mensagempor TheKyabu » Dom Out 28, 2012 11:44

Pois é,ainda n tenho to acompanhando o livro do guidorizzi,ai to no inicio de derivadas e apareceu eses exercicio ai,
pelo q vc diz,parece q da pra resolver esses exercicio mais facilmente,com outras tecnicas de derivaçao neh
vlw ai pela ajuda
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?