por Edmond Dantes » Sáb Out 20, 2018 11:31
Posso
sempre mudar os eixos quando vou calcular o volume dos solidos?
https://imgur.com/Urx9iuw
-
Edmond Dantes
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 10, 2018 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por Gebe » Sáb Out 20, 2018 15:47
Nesse exemplo que tu colocou não há mudança de eixo, tu apenas girou o desenho 90° e espelhou, portanto não há problema algum, é apenas uma outra perspectiva do mesmo desenho.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Edmond Dantes » Sáb Out 20, 2018 16:40
É o que eu tentei dizer, Gebe
Obrigado pela resposta!
-
Edmond Dantes
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jun 10, 2018 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- rotação de eixos
por CarolMarques » Sáb Set 01, 2012 19:38
- 4 Respostas
- 3385 Exibições
- Última mensagem por e8group

Dom Set 02, 2012 13:27
Geometria Analítica
-
- [Rotação de Eixos] Eliminar o termo misto
por luankaique » Qui Set 05, 2013 14:20
- 0 Respostas
- 2223 Exibições
- Última mensagem por luankaique

Qui Set 05, 2013 14:20
Geometria Analítica
-
- Volume dos sólidos
por Santosk » Seg Abr 15, 2013 15:16
- 1 Respostas
- 2008 Exibições
- Última mensagem por young_jedi

Seg Abr 15, 2013 21:20
Geometria Espacial
-
- [Integral] - Volume de solidos por cortes
por iaraalmeida » Qui Jun 25, 2015 01:14
- 0 Respostas
- 3218 Exibições
- Última mensagem por iaraalmeida

Qui Jun 25, 2015 01:14
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3530 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.