por iksin » Ter Set 11, 2018 16:29
-
iksin
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Set 11, 2018 16:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por Gebe » Ter Set 11, 2018 17:38
Bem, na minha opnião o enunciado não é claro quanto a situação, no entanto acho que o entuito era o que represento no desenho abaixo.
Ps.: percebi só agora que o "6Km" ficou mal posicionado. O "6Km" é a distancia AB e não AX

- Sem título.png (3.42 KiB) Exibido 7248 vezes
No desenho veos que o rapaz está em uma margem de um rio com largura de 5Km e quer chegar em um ponto B a 6Km do ponto A localizados na outra margem.
Como vemos no desenho, a linha da trajetoria do barco o ponto onde vai atracar (x) forma um triangulo retangulo, sendo 'h' a hipotenusa.
Perceba tambem que a diferença (6-x) representa a distancia que será percorrida andando.
teremos então que a distancia total percorrida será dada por h + (6-x) como mostrado abaixo:
![\\
Distancia\;total=h+(6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+5^5} + (6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+25} + (6-x) \\
Distancia\;total=h+(6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+5^5} + (6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+25} + (6-x)](/latexrender/pictures/1ed2a0d52fb0e0945160a36dbc5344f6.png)
Como estamos interessados no tempo, vamos dividir cada trecho pela sua respectiva velocidade:
![\\
t(x)=\frac{Dist_{barco}}{Vel_{barco}} + \frac{Dist_{pe}}{Vel_{pe}}\\
\\
t(x) = \frac{\sqrt[]{x^2+25}}{2} + \frac{(6-x)}{4} \\
t(x)=\frac{Dist_{barco}}{Vel_{barco}} + \frac{Dist_{pe}}{Vel_{pe}}\\
\\
t(x) = \frac{\sqrt[]{x^2+25}}{2} + \frac{(6-x)}{4}](/latexrender/pictures/0315d41724b8118dbcaaeb118fbdb233.png)
Por fim temos que achar 'x' que minimiza o tempo gasto. Para isso igualamos a derivada primeira da função t(x):
![\\
\frac{d\left( t(x) \right)}{dx}=\frac{x}{2\sqrt[]{x^2+25}}-1/4\\
\\
\frac{x}{2\sqrt[]{x^2+25}}-1/4=0\\
\\
4x^2 = x^2+25\\
\\
x = \frac{5\sqrt[]{3}}{3} \\
\frac{d\left( t(x) \right)}{dx}=\frac{x}{2\sqrt[]{x^2+25}}-1/4\\
\\
\frac{x}{2\sqrt[]{x^2+25}}-1/4=0\\
\\
4x^2 = x^2+25\\
\\
x = \frac{5\sqrt[]{3}}{3}](/latexrender/pictures/b096eeac37421c18ec50494cedc5dff6.png)
Espero ter ajudado, bons estudos.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problemas usando derivadas
por ezidia51 » Sex Set 07, 2018 17:21
- 60 Respostas
- 118688 Exibições
- Última mensagem por ezidia51

Sáb Dez 29, 2018 22:21
Cálculo: Limites, Derivadas e Integrais
-
- Maximo e minimo usando derivadas parciais
por duduxo81 » Seg Nov 27, 2017 19:55
- 0 Respostas
- 4383 Exibições
- Última mensagem por duduxo81

Seg Nov 27, 2017 19:55
Cálculo: Limites, Derivadas e Integrais
-
- Problema usando a lógica
por virginia » Sáb Abr 27, 2013 11:52
- 1 Respostas
- 1485 Exibições
- Última mensagem por Jhennyfer

Sáb Abr 27, 2013 17:22
Lógica
-
- expoente básico
por fna » Sex Mai 24, 2013 03:31
- 1 Respostas
- 7912 Exibições
- Última mensagem por Rafael16

Sex Mai 24, 2013 12:13
Álgebra Elementar
-
- Exercicio básico Algorítimo
por Pstefani » Sex Mar 02, 2012 11:39
- 1 Respostas
- 13410 Exibições
- Última mensagem por MarceloFantini

Sex Mar 02, 2012 18:49
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.