• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação da reta tangente]

[Equação da reta tangente]

Mensagempor carolzinhag3 » Seg Out 03, 2016 19:43

Encontre as equações para as retas tangentes a elipse \[\frac{x^2}{4}+ y^2 =1\] e passam pelo ponto (0,2)

*Se puderem explicar de forma detalhada, ficarei grata.
carolzinhag3
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 01, 2016 23:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação da reta tangente]

Mensagempor adauto martins » Sex Jan 06, 2017 15:18

eq.reta tangente:
{y}_{t}-{y}_{0}=f'({x}_{0})(x-{x}_{0})...({x}_{0},{y}_{0})=(0,2)...
vamos achar o coeficiente angular que é dado pela derivada da funçao no ponto especificado,ou seja:
d/dx(({x}^{2}/4)+{y}^{2})=d/dx(1)=0\Rightarrow 


2.(x/4)+2.y.dy/dx=0\Rightarrow 

f'(x)=(-1/4)(x/y)...d/dx(({x}^{2}/4)+{y}^{2})=d/dx(1)=0\Rightarrow 


2.(x/4)+2.y.dy/dx=0\Rightarrow 

f'(x)=dy/dx=(-1/4)(x/y)...

no ponto especificado (0,2)\Rightarrow f'(0)=(-1/4)(0/2)=0\Rightarrow {y}_{t}-2=0\Rightarrow {y}_{t}=2...

para efeito de exemplo vamos tomar o ponto (1,2)\Rightarrow f'(1)=(-1/4)(1/2)=-1/8\Rightarrow 


{y}_{t}-2=(-1/8)(x-1)\Rightarrow

{y}_{t}=-x/8+((1/8)+2)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59