• Anúncio Global
    Respostas
    Exibições
    Última mensagem

taxas relacionadas derivada

taxas relacionadas derivada

Mensagempor JoaoLuiz07 » Seg Fev 08, 2016 16:17

Calcule a area maxima de um trapezio inscrito em um semi circulo de raio R,
de uma forma que a base inferior do trapezio seja o diametro do semi circulo
JoaoLuiz07
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 31, 2015 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: taxas relacionadas derivada

Mensagempor adauto martins » Dom Fev 28, 2016 13:11

sejam os pontos A,B,C,D q.interceptam a semi-circun. no sentido horario..e seja O o ponto central da semi-circunf....
vamos tomar o triangulo BEO,dentro do trapezio,onde E e o ponto de projeçao de B, sobre a reta AD(diametro da circunf.)...vamos chamar de x=BC(lado menor do trapezio) e y=BE altura...faremos assim pra tomar x=f(y) p/ podermos derivar...logo...
{r}^{2}={y}^{2}+{(2r-x)}^{2}\Rightarrow y=\sqrt[]{{r}^{2}-{(2r-x)}^{2}}...
a area de do trapzio sera:
A=(2r+x/2).(\sqrt[]{{r}^{2}+({(2r-x)}^{2}})\Rightarrow dA/dx=(1/2).\sqrt[]{({r}^{2}-({(2r-x)}^{2}}+(2r+x/2)d/dx(\sqrt[]{{r}^{2}-({2r-x)}^{2}})=0(usei derivada da regra do produto)...dessa expressao encontra-se x=f(r) e substtitui na formula da area A...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)