• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Como calcular este limite?

[Limites] Como calcular este limite?

Mensagempor alienpuke » Qua Set 30, 2015 23:32

Estou com dúvidas sobre como calcular estes limites passo a passo

\lim_{x->0} \frac{\sqrt x^2-x }{3x +2}


\lim_{x->0} \frac{sen(3x)}{x cos(4x)}

Alguém pode me explicar como resolver? Sei que o resultado dá 1/3 e 3 respectivamente.
alienpuke
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Set 30, 2015 23:23
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limites] Como calcular este limite?

Mensagempor nakagumahissao » Sex Out 02, 2015 00:05

O primeiro limite já foi resolvido em outro post. Não o resolverei novamente.


Já o segundo:

\lim_{x \rightarrow 0} \frac{\sin(3x)}{x\cos(4x)}

Temos uma indeterminação do tipo 0/0. Então utilizarei L'Hôpital para resolver este problema:

\lim_{x \rightarrow 0} \frac{3\cos(3x)}{\cos(4x) - 4\sin(4x)} = \frac{3\cos(0)}{\cos(0) - 4\sin(0)} = \frac{3}{1-0} = 3

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.