por AlexanderCanust » Seg Abr 27, 2015 20:37
![\lim_{x\rightarrow0}\frac{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}{x} \lim_{x\rightarrow0}\frac{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}{x}](/latexrender/pictures/0b8f88826b60494555aa0310ddcfbe67.png)
Bom... eu multipliquei a função pelo divisor, e achei x², o que me permitiu "cortar" o x.
![\lim_{x\rightarrow0}\frac{x}{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}} \lim_{x\rightarrow0}\frac{x}{\sqrt[2]{x+2}+\sqrt[2]{x+6}-\sqrt[2]{6}-\sqrt[2]{2}}](/latexrender/pictures/e7280533690c9be7e849417293c208d5.png)
Porém, mesmo assim eu não posso substituir x por 0, pois ainda assim meu denominador vai igualar a 0.
Desde já agradeço pela ajuda.

-
AlexanderCanust
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 27, 2015 19:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
por adauto martins » Ter Abr 28, 2015 15:46
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por AlexanderCanust » Ter Abr 28, 2015 19:40
Perfeito. Muito obrigado.

-
AlexanderCanust
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Abr 27, 2015 19:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- limites: tende ao infinito
por Victor Gabriel » Sáb Abr 27, 2013 00:40
- 0 Respostas
- 998 Exibições
- Última mensagem por Victor Gabriel

Sáb Abr 27, 2013 00:40
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] encontrar condicao para o denominador
por kaylon » Qua Jun 12, 2013 12:00
- 0 Respostas
- 1362 Exibições
- Última mensagem por kaylon

Qua Jun 12, 2013 12:00
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3713 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- Provar lim f(x)g(x) =0 quando o x tende a p
por Danilct » Seg Dez 07, 2015 22:00
- 0 Respostas
- 2232 Exibições
- Última mensagem por Danilct

Seg Dez 07, 2015 22:00
Cálculo: Limites, Derivadas e Integrais
-
- Qual o limite de [(2-x)^4-16]/x quando X tende a 0
por Therodrigou » Qua Jun 20, 2018 06:46
- 2 Respostas
- 9408 Exibições
- Última mensagem por Therodrigou

Qua Jun 20, 2018 22:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.