• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com raiz enésima - como calcular?

Limite com raiz enésima - como calcular?

Mensagempor Brunorp » Ter Mar 24, 2015 08:56

Saberiam ajudar a calcular o limite abaixo sem utilizar o teorema de l'Hospital? Acredito que devamos fazer alguma operação com logarítimos para reorganizar a expressão, mas não encontrei o resultado.

Obrigado!

\lim_{x-a}\left(\sqrt[m]{x}-\sqrt[m]{a} \right)/\left(x-a \right)
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Limite com raiz enésima - como calcular?

Mensagempor adauto martins » Qui Mar 26, 2015 16:17

faz-se y=\sqrt[n]{x}\Rightarrow x={y}^{n}e b=\sqrt[n]{a}\Rightarrow a={b}^{n}...logo:
L=\lim_{y\rightarrow b}(y-b)/({y}^{n}-{b}^{n})=\lim_{y\rightarrow b}(y-b)/(y-b)({y}^{n-1}+{y}^{n-2}+...+{y}^{2}{b}^{n-3}+y{b}^{n-2}+{b}^{n-1})=\lim_{y\rightarrow b}1/({y}^{n-1}+...+{b}^{n-1})=1/({b}^{n-1}+...+{b}^{n-1})=1/n{b}^{n-1}=1/n(\sqrt[n]{a})^{n-1}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?